ebook img

Progress in the Chemistry of Organic Natural Products/Progres Dans La Chimie Des Substances Organiques Naturelles PDF

371 Pages·1963·11.592 MB·German-English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Progress in the Chemistry of Organic Natural Products/Progres Dans La Chimie Des Substances Organiques Naturelles

FORTSCHRITTE DER CHEMIE ORGANISCHER NATURSTOFFE PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS PROGRES DANS LA CHIMIE DES SUBSTANCES ORGANIQUES NATURELLES HERAUSGEGEBEN VON EDITED BY REDIGE PAR L. ZECHMEISTER CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA EINUNDZWA .NZIGSTER BA.ND TWENT1::=FIRST VOLUME VINGT",ET6UNIEME VOLUME VERFASSER AUTHORS AUTEURS R. BANGERT . J. BONNER . H. BROCKMANN . L. CROMBIE L. JAENICKE . C. KUTZBACH . A. D. MEBANE . H. MUXFELDT W.OROSHNIK MIT 14 ABBILDUNGEN WITH 14 FIGURES AVEC 14 ILLUSTRATIONS WI EN· S P R I N G E R. V E R LAG· 1963 ALLE RECHTE, INSBESONDERE DAS DER OBERSETZUNG IN FREMDE SPRACHEN, VORBEHALTEN OHNE AUSDROCKLICHE GENEHMIGUNG DES VERLAGES 1ST ES AUCH NICHT GESTATTET, DIESES BUCH ODER TEILE DARAUS AUF PHOTOMECHANISCHEM WEGE (PHOTOKOPlE, MIKROKOPlE) ODER SONSTWlE ZU VERVlELFALTIGEN ALL RIGHTS INCLUDING TRANSLATION INTO OTHER LANGUAGES RESERVED NO PART OF THIS BOOK MAY BE REPRODUCED IN ANY FORM, BY PHOTOSTAT, MICROFILM, OR ANY OTHER MEANS, WITHOUT WRITTEN PERMISSION FROM THE PUBLISHERS © 1963 BY SPRINGER-VERLAG/WIEN Softcover reprint of the hardcover 15t edition 1963 LIBRARY OF CONGRESS CATALOG CARD NUMBER AC 39-1015 ISBN-13: 978-3-7091-7150-9 e-ISBN-13: 978-3-7091-7149-3 001: 10.1007/978-3-7091-7149-3 Inhaltsverzeichnis. Contents. - Table des matieres. The Biosynthesis of Rubber. By JAMES BONNER, California Institute of Technologie, Pasadena, California .................................. . I. Distribution of Rubber ............................................ . II. Latex............................................................. 2 Structure and Configuration............. . . . . . . . . . . . . . . . . . . . . . . . . . '2 III. Biogenesis of the Monomer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4 IV. Polymerization..................................................... 10 V. Further Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. I I References ........................................................... 13 The Polyene Antifungal Antibiotics. By W. OROSHNIK, Central Research Laboratory Shulton, Clifton, New Jersey, and A. D. MEBANE, Ortho Research Foundation, Raritan, New Jersey......................... 17 I. Introduction...................................................... 18 II. Ultraviolet Spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 I. General Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2. The Tetraenes....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 23 3. The Pentaenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 24 4. The Methylpentaenes .......................................... 24 5. The Hexaenes ................................................ , 24 6. The Heptaenes................................................ 24 III. Structural Elucidation... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 26 I. General Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 26 2. Mycosamine................................................... 28 3. Retro-Aldol Cleavage ......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 30 4. Fungichromin (Lagosin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 32 5· Filipin........................................................ 37 6. Other Methylpentaenes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 39 7. Pimaricin..................................................... 40 8. Nystatin and Other Tetraenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 43 9. Pentaenes and Hexaenes....................................... 45 10. Trichomycin and Other Heptaenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 46 IV. Biogenetic Relationships........................................... 51 V. Tables........................................................... 56 I. Typical Tetraenes: Spectral Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 56 2. Typical Pentaenes: Spectral Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5() 3. Typical Methylpentaenes: Spectral Data. . . . . . . . . . . . . . . . . . . . . . . .. 57 4. Typical Hexaenes: Spectral Data........................ . . . . . . .. 57 5. Typical Heptaenes: Spectral Data.............. . . . . . . . . . . . . . . . .. 57 IV Inhaltsverzeichnis. - Contents. - Table des matieres. 6. Tetraenes: Physical and Chemical Properties. .. . . .. . . . . .. .•. . . . .. 58 7. Pentaenes: Physical and Chemical Properties.. . . . .. . .. . .. . . . .. .. 62 8. Methylpentaenes: Physical and Chemical Properties.. . . . . . . . . . . . .. 64 9. Hexaenes: Physical and Chemical Properties. . . . . . . . . . . . . . . . . . . .. 66 10. Heptaenes: Physical and Chemical Properties.................... 66 References ..............., . ... . .. . . . . . . . . . . . . . . . . . .. . . . .. . . . .. . . . . ... 72 Die Chernie der Tetracycline. Von H. MUXFELDT und R. BANGERT, Department of Chemistry, The University of Wisconsin, Madison, Wisconsin. . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 I. Einleitung........................................................ 80 II. KonstitutionsaufkHirung ........................................... 82 1. Terramycin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 82 Alkalischer Abbau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . .. 83 Saurer Abbau. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 87 Reduktiver Abbau. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 90 2. Aureomycin.................................................... 91 3. 6-Desmethyl-tetracycline ........................................ 96 4. 5 a,II a-Dehydro-7-chlor-tetracyclin ........................., ...... 96 5. 2-Acetyl-2-descarboxamido-tetracycline............................ 97 III. Weitere chemische Eigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 98 1. Reaktionen am C(2).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 2. Reaktionen am C(4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 100 3. Reaktionen am C(6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 102 4. Reaktionen am C(l1a) und C(12a) ................................. 108 IV. Biogenese der Tetracycline.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 113 V. Versuche zur Synthese von Tetracyclinen . . . . . . . . . . . . . . . . . . . . . . . . . .. !I5 Literaturverzeichnis ............................................... 116 Anthracyclinone und Anthracycline (Rhodornycinone, Pyrrornycinone und ihre Glykoside). Von HANS BROCKMANN, Organisch-chemisches Institut der Universitat Gottingen ................................. 121 I. Einleitung........................................................ 122 II. Isolierung der Anthracyclinone und Anthracycline .................... 123 I. Gewinnung der s-Pyrromycinon-glykoside und Pyrromycinone ...... 124 Cinerubin A und B ............................................. 124 Pyrromycin und Pyrromycinone ................................. 124 2. Gewinnung der Rhodomycinone, Iso-rhodomycinone und ihrer Glykoside. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 125 Trennung von RhodomycinonjIso-rhodomycinon-Gemischen ......... 126 Trennung von Rhodomycinen und Iso-rhodomycinen ............... 127 III. Die Anthracyclinone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .. 127 I. Vorbemerkungen zur Struktur der Anthracyclinone . . . . . . . . . . . . . . .. 127 2. Zur Konstitutionsermittlung der Anthracyclinone. . . . . . . . . . . . . . . . .. 130 Die Aufklarung des Chromophors ................................ 131 Die Anellierung des alicyclischen Ringes.......................... 133 v Inhaltsverzeichnis. - Contents. - Table des matieres. Die Substituenten an Ring A .................................... 134 Schreibweise und Bezifferung der Anthracyclinon-Formeln. . . . . . . . .. 137 3. Konstitution der Anthracyclinone ................................ 137 A. Iso-rhodomycinone ........................................... 137 e-Iso-rhodomycinon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 137 C-Iso-rhodomycinon ............................ '" ........... 139 ,B-Iso-rhodomycinon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 140 B. Rhodomycinone ............................................. 140 e-Rhodomycinon ............................................ 140 C-Rhodomycinon ............................................ 141 ,B-Rhodomycinon ............................................ 141 y-Rhodomycinon ............................................ 145 6-Rhodomycinon ............................................ 145 C. Pyrromycinone .............................................. 146 1)-Pyrromycinon ............................................. 146 e-Pyrromycinon ............................................. 151 C-Pyrromycinon ............................................. 151 D. Aklavinone ................................................. 154 Aklavinon .................................................. 154 7-Desoxy-aklavinon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 154 4. Die KMR-Spektren der Anthracyclinone .......................... 155 5. Zur Stereochemie der Anthracyclinone ............................ 160 6. Zur Biogenese der Anthracyclinone.. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 163 IV. Die Anthracycline ................................................. 170 I. Die Zucker der Anthracycline ................................... 171 Rhodosamin ................................................... 171 2-Desoxy-L-fucose ........... " ............. '" ... '" ........... 173 Rhodinose ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 173 2. Anthracycline des e-Pyrromycinons .......... : .................... 174 Pyrromycin .................................................... 174 Cinerubine . . . . . . . . . . . •. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 175 Rutilantine .................................................... 176 3· Anthracycline der Rhodomycinone ... . . . . . . . . . . . . . . . . . . . . . . . . . . .. 176 Rhodomycin A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 176 Rhodomycin B ................................................. 177 y-Rhodomycine ................................................. 177 Iso-rhodomycin A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 178 Antibiotica der Mycetin-ViolaIin-Gruppe .......................... 179 4· Anthracycline des Aklavinons .................................... 179 Aklavin ....................................................... 179 Literaturverzeichnis ............................................... 179 Folsiure und Folat-Enzyme. Von L. JAENICKE und C. KUTZBACH, Physiologisch-chemisches Instiut der Universitat KOln............... 183 I. Einleitung . . . . . . . . . . . . . . . . • . . • . . . . . . . . . . . . . . . . . . . . . • • . . . . . . . . . . .. 184 II. Das Vitamin Folsaure ....•..•..........•...•....••............... 187 I. Entdeckung der Foisaure und ihrer Konjugate ....•.............• 187 VI Inhaltsverzeichnis. - Contents. - Table des matieres. 2. Konjugat-spaltende Enzyme .................................... 190 3. Vorkommen. Bedarf und Ausscheidung .......................... 190 III. Auf- und Abbau der Folsaure-Cofaktoren ........................... 192 1. Biogenese der Folsaure ......................................... 192 2. Biologischer Abbau der Folsaure ................................ 195 3. Enzymatische Reduktion der Folsaure zum Cofaktor .............. 197 IV. Chemie der Folat-Verbindungen .................................... 199 1. Folsaure ...................................................... 199 a. Isolierung .................................................. 199 b. Konstitution und physikalische Eigenschaften. . . . . . . . . . . . . . . . .. 200 c. Chemische Eigenschaften ..................................... 201 d. Folsaure-Synthesen .......................................... 203 2. Reduktion von Folsaure.......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 204 a. Dihydrofolsaure und das Problem der Dihydrofolat-Isomerie .... 204 b. 5,6,7,8-Tetrahydro-folsaure ................................... 207 3. Mit Einkohlenstoff-Korpern substituierte Folsauren ................ 209 a. 10-Formyl-folsaure........................................... 209 b. 10-Formyl-tetrahydrofolsaure ................................. 209 c. 5-Formyl-tetrahydrofolsaure .................................. 21 I d. 5,10-Methinyl-tetrahydrofolsaure .............................. 212 e. 5-Formimino-tetrahydrofolsaure ............................... 215 f. 5,ro-Methylen-tetrahydrofolsaure .... " ........................ 216 g. 5-Methyl-tetrahydrofolsaure ................................... 219 4. Folsaure-Analoge............................................... 220 5. Spektren von Folat-Verbindungen ............................... 222 6. Analyse und Trennung von Folsaure-Verbindungen ................ 225 a. Chemische Verfahren ........................................ 225 b. Polarographie ............................................... 225 c. Mikrobiologische Methoden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 226 d. Chromatographische Trennung ................................ 227 V. Das Einkohlenstoff-Reservoir ...................................... 229 1. Herkunft der Ameisensaure ..................................... 229 2. Glycin als Quelle von Einkohlenstoffkorpern ...................... 231 3. Der Einkohlenstoff-Donator Serin ............................... 232 4. Herkunft der Methylgruppe .................................... , 233 VI. Folat-katalysierte Enzym-Reaktionen ............................... 236 1. Der Transhydroxymethylierungs-Cyclus ........................... 236 a. Serin-Aldolase............................................... 236 b. Transhydroxymethylierungs-Reaktionen ........................ 239 c. Methylentetrahydrofolat-Dehydrogenase ........................ 239 2. Methylengruppen-Genese........................................ 240 a. Thymidylat-Bildung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 240 b. Methylentetrahydrofolat-Reduktase: 5-Methyl-tetrahydrofolsaure.. 242 c. Methionin-Bildung ........................................... 243 ~. Die Gesamt-Reaktion ..................................... 243 fl. Zusammenhange zwischen Foisaure und Vitamin B1Z' ••••••• , 244 y. Der Acceptor der Methylgruppe ..•......................... 245 Inhaltsverzeichnis. - Contents. - Table des matieres. VII 3. Transformylierungs-Cyclen .......... . . . . . . . . . . . . . . . . . . . . . . . . . . .. 246 a. Abbau von Histidin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 246 b. Deacylase und Glutamyl-Transferase .......................... 247 c. Aktivierte Ameisensaure im Purin-Stoffwechsel.... . . . . . . . . . . . .. 248 iX. Vergarung von Purinen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 248 fl· Tetrahydrofolat-Formylase ................................. 249 y. Transformylierungen ...................................... 251 VII. Zusammenfassung ................................................ 253 Literaturverzeichnis ............................................... 254 Chemistry of the Natural Rotenoids. By L. CROMBIE, Department of Chemistry, University of London King's College, London ........... 275 I. Introduction .................................................... 275 II. General Remarks on Rotenone and the Rotenoids .................. 276 1. Isolation ................................................... " 278 2. Colour Tests .................................................. 278 3· Nomenclature ................................................. 279 III. Stereochemistry of Rotenone ..................................... 279 IV. Chemistry of Rotenone ........................................... 284 V. The Rotenolones and Isorotenolones............................... 290 1. The A and B Series ......................................... " 290 2. The C and D Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 294 VI. The Rotenoids ................................................ " 295 1. Stereochemistry.............................................. 295 2. Deguelin .................................................... 296 3· Elliptone.................................................... 297 4· Munduserone ................................................ 298 5· iX-Toxicarol ................................................ " 299 6. Sumatrol ................................................. _ .. 301 7· Malaccol .................................................... 302 8. Pachyrrhizone ............................................... 303 9· Erosone..................................................... 304 10. Dolineone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 304 VII. Biogenesis and Biogenetic Connections of the Rotenoids ............ 305 VIII. Synthesis in the Rotenoid Group................................. 309 Addendum ........................................................... 316 References .......................................................... 316 Namenverzeichnis. Index of Names. Index des Auteurs ... . . . . . . . . . . . . . . • . .. 326 Sachverzeichnis. Index of Subjects. Index des Matieres . . . . . . . . . . . . . . . . . . . .. 340 The Biosynthesis of Rubber. J By AMES BONNER, Pasadena, California. With 2 Figures. Contents. Page 1. Distribution of Rubber ............................................ . II. Latex............................................................. z Structure and Configuration...................................... z III. Biogenesis of the Monomer ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4 IV. Polymerization..................................................... TO V. Further Problems... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. IT References ........................................................... 13 Of the major biosynthetic pathways of the plant, that associated with the synthesis of rubber has been among the last to be elucidated. All that we know today concerning isoprenoid biogenesis is information acquired since 1949, much of it since 1956. Today, however, rubber biosynthesis may be considered as a problem solved. We can plot out in intimate detail the complete pathway by which carbon atoms present in common plant metabolites such as carbohydrates are converted to the polyisoprene molecule. I. Distribution of Rubber. All species of higher plants possess, it is believed, the capability of synthesizing varied species of isoprenoids. Amongst the widely distributed isoprenoids are the carotenoids, the steroids, the long-chain isoprenoid alcohols, such as phytol, and the isoprenoid tails of the ubiquinones. Ubiquitous distribution is not, however, a property of rubber. Rubber is synthesized by but some 2000 of the 400000 species of higher plants. The distribution of the ability to synthesize rubber appears to be random through the higher plant family tree, with the exception that such ability does not occur in any monocotyledonous plant such as, for example, the grasses, nor in any of the gymnosperms, as, for example, the pines and their allies (I3). Of the 2000 species which produce rubber, only a few produce it in large quantity. Amongst the principal rubber accumulating plants are, Ficus elastica RoxB. (the rubber plant), Parthenium argentatum Fortschritte d. Chern. org. Naturst. XXI. 2 J. BONNER: ----=~c=-c=_======== GRAY (the guayule), and Taraxicum kok saghyz RODIN (the Russian dandelion). The rubber tree of commerce, Hevea braziliensis MUELL. supplies, however, all but an infinitesimal amount of the world's cultivated natural rubber. A small number of tropical species, including Palaquium gutta BURCK and Mimusops balata GAERTN., produce an isomer of rubber, gutta. II. Latex. In the rubber producing species, rubber is contained in general in specialized cells, the latex vessels. Latex is the protoplasm of these cells and contains therefore, in addition to rubber particles stabilized by protein, all of the usual intracellular components, enzyme molecules, mitochondria, nuclei, and in all probability, ribosomes, as well as low molecular weight metabolites. The enzymes of latex include those which participate in the biosynthesis of rubber as will be discussed below. The concentration of rubber in latex may be very high indeed, 30% in the case of H evea braziliensis. The latex vessels of Hevea and of the other principal rubber-producing species are located in the bark, and are interconnected to form a vast continuous network (Figs. I, 2). Latex within this network is under positive hydrostatic pressure (II). If a cut into the lactiferous system is made, latex pours out through the opened vessels, the flow continuing for minutes or hours depending upon the species involved. This flow ultimately ceases, probably often due to coagulation of the latex by the action of microorganisms. The vessel again takes up water to restore its hydrostatic pressure to normal, and in Hevea in particular, rubber is again synthesized. It is this feature of Hevea, the feature of rapid regeneration of the rubber content of the latex vessels, which makes it the rubber plant of choice. A rubber tree may be tapped on alternate days throughout the bulk of its life, and yield a constant or increasing amount of rubber, over the course of 30 years or more. Structure and Configuration. Rubber and gutta are both polyisoprenoids, in which isoprene residues are linked together through lA-linkages. The polymer molecule is of the order of 500 to 5000 residues long, in the case of rubber; of the order of 100 residues long in the case of gutta (Guttapercha, Balata). In rubber (VI, p. 8) the double bonds of each isoprene residue possess cis configuration, and rubber is therefore an all-cis-polyterpene. In gutta, on the other hand, all isoprene double bonds possess trans configuration. Hybrid molecules containing both cis and trans double bonds do not appear to occur, either in gutta or in rubber (20). References, pp. I3-I6. Biosynthesis of Rubber. 3 Fig. I. High yielding tree of HCD'ea brasiliensis under tapping and with latex dripping from tapping cut. The sloping tapping cut intersects the latex vessels at approximately right angles. At each tap a fresh ca. I rnm. of bark is removrd, so the tapping cut moves downward. [Conrtpsy, Rubher Research Institute of :\Ialaya, Kuala Lumpur.l 1*

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.