84 Fortschritte der Chemie organischer Na turstoffe Progress in the Chemistry of Organic Natural Products Founded by L. Zechmeister Edited by W Herz, H. Falk, and G. W Kirby Authors: M. Glasenapp-Breiling, P. G. Jagtap, D. G. I. Kingston, F.-P. Montforts, L. Samala, H. Yuan SpringerW ienN ew York Prof. W. Herz, Department of Chemistry, The Florida State University, Tallahassee, Florida, U.S.A. Prof. H. Falk, Institut fUr Chemie, 10hannes-Kepler-Universitat, Linz, Austria Prof. G. W. Kirby, Chemistry Department, The University of Glasgow, Glasgow, Scotland This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machines or similar means, and storage in data banks. ISBN 978-3-7091-3228-9 ISBN 978-3-7091-6160-9 (eBook) DOI 10.1007/978-3-7091-6160-9 Softcover reprint of the hardcover 1s t edition 2002 2002 by Springer-Verlag Wien Product Liability: The publisher can give no guarantee for all the information contained in this book. This does also refer to information about drug dosage and application thereof. In every individual case the respective user must check its accuracy by consulting other pharmaceutical literature. The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Library of Congress Catalog Card Number AC 39-1015 Typesetting: Thomson Press (India) Ltd., Noida Printed on acid-free and chlorine-free bleached paper SPIN: 10845363 With 12 Figures ISSN 0071-7886 Contents List of Contributors ........................................... VIII Naturally Occurriug Cyclic Tetrapyrro\es F.-P. Montforts and M. Glasenapp-Breiling .......................... . 1. Introduction .............................................. 2 2. Classification ............................................. 3 3. General Aspects of Cyclic Tetrapyrrole Biosynthesis . . . . . . . . . . . . . . . . . . 5 4. Porphyrins ............................................... 9 4.1. Occurrence, Structure, and Biological Function .................. 9 4.2. Biosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.3. Aspects of Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5. Chlorins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.1. Occurrence, Structure, and Biological Activity .................. , 14 5.2. Biosynthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 5.3. Aspects of Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20 6. Bacteriochlorins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 23 6.1. Occurrence, Structure, and Biological Activity . . . . . . . . . . . . . . . . . . . 23 6.2. Aspects of Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7. Isobacteriochlorins ......................................... , 27 7.1. Occurrence, Structure, and Biological Activity . . . . . . . . . . . . . . . . . .. 27 7.2. Biosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 29 7.3. Aspects of Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 29 8. Higher Saturated Hydroporphyrins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 8.1. Occurrence, Structure, and Biological Activity . . . . . . . . . . . . . . . . . .. 32 8.2. Biosynthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 36 9. Corrins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 36 Acknowledgments 42 References ................................................. 42 VI Contents The Chemistry of Taxol and Related Taxoids By D. G. I. Kingston, P. G. Jagtap, H. Yuan, and L. Samala ............. . 53 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2. A-Ring Chemistry ....................................... . 57 2.1. Modifications of the 11,12-Double Bond .................... . 58 2.2. Modifications at C-13 ................................. . 60 2.3. Modifications at C-14 ................................. . 62 2.4. Modifications at C-18 65 3. B-Ring Chemistry ....................................... . 66 3.1. Modifications at C-1O ................................. . 66 3.2. Modifications at C-9 .................................. . 73 3.3. Modifications at C-19 ................................. . 75 304. Modifications at C-2 .................................. . 76 3.5. Modifications at C-l .................................. . 80 3.6. Other B-Ring Analogs ................................. . 81 3.7. SAR of B-Ring Analogs ............................... . 82 4. C-Ring Chemistry ....................................... . 85 4.1. The C-7 Hydroxyl Group ............................... . 85 4.2. Products Derived from 6,7-Dehydrotaxol .................... . 93 4.3. Modifications at C-4 .................................. . 96 5. D-Ring Chemistry ....................................... . 100 5.1. Ring Opening by Electrophiles ........................... . 101 5.2. Ring-Opening by Nucleophiles ........................... . 102 5.3. D-Ring Analogs ..................................... . 102 504. Spectroscopic and Theoretical Studies ...................... . 105 6. Rearrangements and Related Reactions ........................ . 105 6.1. Rearrangements Leading to 11(15->1)-abeo taxols (A-nortaxols) ... . 106 6.2. Rearrangements Involving the B-Ring ...................... . 108 6.3. Rearrangements Involving Both A- and B-Rings ............... . 110 604. Rearrangements of Ring C .............................. . 112 7. The Side Chain .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 7.1. Synthesis of the Side Chain by the -lactam Approach ........... . 113 7.2. Synthesis of the Side Chain via an Epoxide Intermediate ......... . 116 7.3. Synthesis of the Side Chain by Sharpless Asymmetric Aminohydroxylation .................................. . 118 7 A. Synthesis of the Side Chain by Coupling Reactions ............ . 119 7.5. Synthesis of Cyclically Protected Side Chains ................ . 122 7.6. Miscellaneous Syntheses ............................... . 124 7.7. Syntheses of Phosphonate Side Chain Analogs ................ . 126 8. Synthesis of Taxol and Taxol Side Chain Analogs from Baccatin III .... . 126 8.1. Synthesis of Taxol and Docetaxel ......................... . 126 8.2. Synthesis of N-Acyl Analogs of Taxol ..................... . 129 8.3. Synthesis of 3'-AryI Analogs of Taxol ...................... . 130 804. Taxol Analogs with Modified N-Acyl and 3'-Aryl Groups ........ . 131 8.5. Taxol Analogs Modified Both on the Side Chain and the Ring System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Contents VII 8.6. Synthesis of Taxol Analogs with Highly Modified Side Chains. . . . . . 133 8.7. Side Chain Chemistry .................................. 135 9. Taxol Metabolites ........................................ 136 10. Taxol Analogs and Prodrugs ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 10.1. Simple Ester Derivatives and Prodrugs ..................... 138 10.2. Phosphate Ester and other Prodrugs . . . . . . . . . . . . . . . . . . . . . . . . 139 10.3. Taxol Analogs with Polymeric Acyl Substitutions. . . . . . . . . . . . . . 140 10.4. Targeted Analogs of Taxol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 11. Labeled Taxol Analogs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 11.1. Isotopically Labeled Taxols ............................. 142 11.2. Photoaffinity Labeled Taxols ............................ 143 11.3. Fluorescent and Other Labeled Taxols . . . . . . . . . . . . . . . . . . . . . . 145 12. The Synthesis of Taxol and Taxol Analogs from Precursors other than Baccatin III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 13. The Synthesis of Simplified and Unusual Taxol Analogs ............. 153 13.1. Simplified Analogs ................................... 153 13.2. Dimeric Analogs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 14. The Synthesis of Taxol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 14.1. The Holton Synthesis ................................. 157 14.2. The Nicolaou Synthesis .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 14.3. The Danishefsky Synthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 14.4. The Wender Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 14.5. The Kuwajima Synthesis ............................... 165 14.6. The Mukaiyama Synthesis .............................. 167 15. The Interaction of Taxol with Tubulin .......................... 169 15.1. Photoaffinity Labeling Studies ........................... 171 15.2. Fluorescence Spectroscopic Studies . . . . . . . . . . . . . . . . . . . . . . . . 171 15.3. Nuclear Magnetic Resonance Studies ...................... 173 15.4. The Taxol Pharmacophore .............................. 175 Addendum ................................................ 179 Acknowledgements .......................................... 193 References ................................................ 193 Author Index .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 245 List of Contributors Glasenapp-Breiling, Dr. M., Institut flir Organische Chemie, FB 2 Biologie/Chemie, Universitat Bremen, Postfach 330440, D-28334 Bremen, Germany Jagtap, Dr. P. G., Department of Chemistry, MlC 0212, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, U.S.A. (current address: Laboratory for Drug Discovery in Neurodegeneration, Harvard Center for Neurodegencration and Repair, 65 Landsdowne Street, Cambridge, MA 02139, U.S.A.) Kingston, Univ. Dist. Prof. D. G. 1., Department of Chemistry, M/C 0212, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, U.S.A. Montforts, Prof. Dr. F.-P., Institut flir Organische Chemie, FB 2 Biologie/Chemie, Universitat Bremen, Postfach 330440, D-28334 Bremen, Germany Samala, Dr. L., Department of Chemistry, M/C 0212, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, U.S.A. (current address: Combinatorial and Medicinal Chemistry, Pharmacia Corporation, 7000 Portage Road, Kalamazoo, MI 49001, U.S.A.) Yuan, Dr. H., Department of Chemistry, M/C 0212, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, U.S.A. (current address: Allergan Inc., 2525 Dupont Dr., Mail Code RD-3D, Irvine, CA 92623, U.S.A.) Naturally Occurring Cyclic Tetrapyrroles* F.-P. Montforts and M. Glasenapp-Breiling Institut fiir Organische Chemie, Universitat Bremen, Bremen, Germany Contents 1. Introduction .............................................. 2 2. Classification ............................................. 3 3. General Aspects of Cyclic Tetrapyrrole Biosynthesis . . . . . . . . . . . . . . . . . . 5 4. Porphyrins ............................................... 9 4.1. Occurrence, Structure, and Biological Function .................. 9 4.2. Biosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.3. Aspects of Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5. Chlorins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.1. Occurrence, Structure, and Biological Activity. . . . . . . . . . . . . . . . . .. 14 5.2. Biosynthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.3. Aspects of Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20 6. Bacteriochlorins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.1. Occurrence, Structure, and Biological Activity . . . . . . . . . . . . . . . . . .. 23 6.2. Aspects of Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7. Isobacteriochlorins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 27 7.1. Occurrence, Structure, and Biological Activity. . . . . . . . . . . . . . . . . .. 27 7.2. Biosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 29 7.3. Aspects of Synthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 29 8. Higher Saturated Hydroporphyrins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 32 8.1. Occurrence, Structure, and Biological Activity . . . . . . . . . . . . . . . . . .. 32 8.2. Biosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 36 9. Corrins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Acknowledgments ............................................ 42 References ................................................. 42 * Dedicated to Professor L. F. Tietze on the occasion of his 60th birthday. 2 F.-P. Montforts and M. Glasenapp-Breiling 1. Introduction Of the porphyrinoid structures occurring in nature the most important and most widespread are the red blood pigment heme (1), the green pigment of plant photosynthesis chlorophyll a (2), the bacterial photo synthetic pigment bacteriochlorophyll a (3), and the "antipernicious" red pigment vitamin BJ2 (4). The basic function of these cofactors are determined by the incorporation of the different metal ions into the macrotetracycles. The different oxidation levels of the macrocyclic ligand system regulate the fine tuning of these functions. The final adaptation of the cofactors to their special molecular environments in the cell compartments is effected by variation of the substitution patterns of the chromophores. H3CO,C CO,Phytyl 2 Heme Chlorophyll a CONH, CONH, ~ H,NOC 1 , CONH, /I(Y N~ 3 4 Bacteriochlorophyll a Vitamin B" HO References, pp. 42-51 Naturally Occurring Cyclic Tetrapyrroles 3 Until the mid-1970s the four classic cyclic tetrapyrrolic structures with their porphyrin, chi orin, bacteriochlorin, and corrin skeletons were almost the only representatives in the class of porphyrinoid natural products (1-10). Although other partially reduced porphyrins were conceivable, none of these partially saturated porphyrinoid structures had hitherto been found in nature. Over the past 25 years, two developments have extended the range of naturally occurring porphyrinoids with novel, interesting structures. The first route of development originates from the investigation of vitamin B12 biosynthesis (10-12). Novel hydroporphyrinoid structures have been discovered in the search for biosynthetic intermediates leading to vitamin BIZ' At the same time some of these structures of vitamin B12 biosynthesis were identified as cofactors of redox enzymes of micro organisms and plants (8, 13, 14). The second route was characterized by the deliberate search for new porphyrinoid structures in marine organisms and micro-organisms, which resulted in the discovery of novel porphyrinoid and hydroporphyrinoid compounds (13-18). In both cases isolation and structural elucidation of novel structures, which often occur as traces in natural sources, had become possible due to the simultaneous development of new separation techniques and modem NMR spectroscopic methods. The identification of intermediates in the biosynthesis especially of vitamin B12 was also decisively facilitated by application of methods from molecular biology. Last but not least the novel structures with unusual biological activities have also attracted the attention of organic synthetic chemists, who have developed synthetic pathways and have thus been able to support structure elucidation, to produce sufficient amounts of material, and to modify the natural lead structures. 2. Classification Due to their extended conjugated n-system, porphyrins and their derivatives as well as corrins are deeply coloured and show characteristic electronic absorption spectra which vary with the saturation of the chromophoric system, with the central metal ions of the macrocycles, and the various substituents attached to the chromophores (1, 19). Thus, the different porphyrin derivatives can be easily distinguished from each other. The most intense absorption of prophyrins occurs at Amax ~ 400 nm with a molar extinction coefficient of E ~ 400000. This band is named after its discoverer (1883) the Soret band. Other bands with lower intensity than the Soret band occur in the long-wave length