87 Fortschritte der Chemie organischer Na turstoffe Progress in the Chemistry of Organic Natural Products Founded by 1. Zechmeister Edited by W. Herz, H. Falk, and G. W. Kirby Authors: H. Budzikiewicz, T. Flessner, R. Ja utelat, U. Scholz, E. Winterfeldt Springer-Verlag Wien GmhH Prof. W. Herz, Department of Chemistry, The Florida State University, Tallahassee, Florida, U.S.A. Prof. H. Falk, Institut fiir Chemie, Johannes-Kepler-Universitat, Linz, Austria Prof. G. W. Kirby, Chemistry Department, The University of Glasgow, Glasgow, Scotland This work is subject ta copyright. AII rights are reserved, whether the whole or part of the material is concemed, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machines or similar means, and storage in data banks. © 2004 Springer-Verlag Wien Originally published by Springer-Verlag Wien New York in 2004 Softcover reprint of the hardcover l st edition 2004 Product Liability: The publisher can give no guarantee for the information contained in this book. This also refers ta that on drug dosage and application thereof. In each individual case the respective user must check the accuracy of the information given by consulting other pharmaceutical literature. The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Library of Congress Catalog Card Number AC 39-1015 Typesetting: Thomson Press (India) Ltd., Chennai Printed an acid-free and chlorine-free bleached paper SPIN: 10926505 With 63 partly coloured Figures ISSN 0071-7886 ISBN 978-3-7091-7199-8 ISBN 978-3-7091-0581-8 (eBook) DOI 10.1007/978-3-7091-0581-8 Contents List of Contributors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. VIII Cephalostatin Analogues - Synthesis and Biological Activity T. Flessner, R. Ja utelat, U. Scholz, and E. Winterfeldt ................. . 1. Introduction ............................................ . 2. Synthesis of Bissteroidal Pyrazines ............................. 15 2.1. Synthesis of Symmetrical Pyrazines and Subsequent Desymmetrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2. Directed Synthesis of Unsymmetrical Pyrazines . . . . . . . . . . . . . . . . . 28 2.2.1. Nonacyclic Cephalostatin Analogues . . . . . . . . . . . . . . . . . . . . 37 2.2.2. Dienes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3. A-D-Ring Functionalization .................................. 42 3.1. Introduction of the Steroidal ~14.15_Bond ..................... 44 3.2. Chemical Modifications on the ~14.15_Double Bond. . . . . . . . . . . . . . 56 4. The Spiroketal Area of Cephalostatins . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5. Summary ............................................... 70 Acknowledgements .......................................... 74 References ................................................ 75 Siderophores of the Pseudomonadaceae sensu stricto (Fluorescent and Non-Fluorescent Pseudomonas spp.) H. Budzikiewicz ............................................ 81 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 1.1. General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 1.2. The Bacterial Genus Pseudomonas . . . . . . . . . . . . . . . . . . . . . . . . . . 84 1.3. Iron Supply for Microorganisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 2. The Typical Siderophores of the Fluorescent Pseudomonads - the Pyoverdins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 2.1. History.............................................. 91 2.2. Detection of Siderophore Producing Strains and Screening Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 2.3. Naming of Pyoverdins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 2.4. Pyoverdin Production and Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . 99 2.5. The Structure of Pyoverdins and of Related Compounds . . . . . . . . . . . 101 VI Contents 2.5.1. General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1 2.5.2. Types of Chromophores (Fig. 4). . . . . . . . . . . . . . . . . . . . . . . . 102 2.5.3. The Dicarboxylic Acid Side Chain. . . . . . . . . . . . . . . . . . . . . . 108 2.5.4. The Peptide Part. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 2.5.5. Structural Variations of Pyoverdins. . . . . . . . . . . . . . . . . . . . . . 118 2.6. Structural Studies by NMR and Mass Spectrometry. . . . . . . . . . . . . . . 119 2.6.1. Formation of Peptide Fragment Ions and their Nomenclature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 2.6.2. Ionization Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 2.6.3. Fragmentation of Structural Elements of Pyoverdins and Related Siderophores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 2.7. Synthetic Studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 2.8. Metal Complexes of Pyoverdins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 2.8.1. Fe Complexes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 2.8.2. Ga3+ Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 2.8.3. Cr3+ Complexes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 2.8.4. Other Metal Complexes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 2.9. The Three-Dimensional Structure of the Pyoverdin Complexes. . . . . . . 143 2.10. Pyoverdin-Mediated Iron Transport into the Bacterial Cell. . . . . . . . . . 144 2.11. Siderophores Related to the Pyoverdins . . . . . . . . . . . . . . . . . . . . . . . 151 2.11.1. 5,6-Dihydropyoverdins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 2.11.2. Ferribactins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 2.11.3. Azotobacter and Azomonas Siderophores . . . . . . . . . . . . . . . . . 153 2.12. Biosynthesis of the Pyoverdins and Azotobactins. . . . . . . . . . . . . . . . . 156 2.13. Selected Pyoverdin Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 2.13.1. Pseudomonas aeruginosa. . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 2.13.2. Pseudomonas tolaasii and Related Species. . . . . . . . . . . . . . . . 164 2.13.3. Pseudomonas syringae and Related Species. . . . . . . . . . . . . . . 166 2.13.4. Pseudomonas fluorescens G 173. . . . . . . . . . . . . . . . . . . . . . . 168 2.14. Corrected Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 2.14.1. Pyoverdin PAOlo . . . . . . . . . . .. . . . . . . .. . . . . . . . .. . . . . 171 2.14.2. Pseudobactins 7SRI and A225 . . . . . . . . . . . . . . . . . . . . . . . . 171 2.14.3. Pseudobactins A214 and ATCC 39167 . . . . . . . . . . . . . . . . . . 172 2.14.4. Pseudobactin WCS 358 and Pyoverdin CFBP 2461 (Ll). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 2.14.5. Pyoverdin CFBP 2392 (no. 15). . . . . . . . . . . . . . . . . . . . . . . . 174 2.14.6. Pyoverdin BTP7 (no. 32). . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 2.14.7. Azotobactins (nos. 47, 48) and Azoverdin (no. 37). . . . . . . . . . 174 3. Other Siderophores of Fluorescent Pseudomonads . . . . . . . . . . . . . . . . . . . 17 5 3.1. Catecholate Siderophores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 3.2. Lipopeptidic Siderophores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 3.2.1. Corrugatin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 3.2.2. Ferrocins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 3.3. Salicyclic Acid and Derived Siderophores. . . . . . . . . . . . . . . . . . . . . . 177 3.3.1. Salicylic Acid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 3.3.2. Pseudomonine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 3.3.3. Pyochelin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 3.3.4. Micacodicin and Related Siderophores . . . . . . . . . . . . . . . . . . . 183 3.4. Hydrogen Cyanide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Contents VII 3.5. Hydroxamate Siderophores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 3.6. Foreign Siderophores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 3.7. Pyridine-2,6-di(monothiocarboxylic acid) and Related Compounds (57) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 3.8. Alkyl-4-hydroxyquinolines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 3.9. Ferrorosamine (Pyrimine) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 4. Iron Sequestering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 5. Pseudomonas and Health. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 6. Pseudomonas and Agriculture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 200 7. Pseudomonas and Environmental Problems. . . . . . . . . . . . . . . . . . . . . . . . 201 Notes Added in Proof. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Acknowledgements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 203 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 Bacterial Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 Bacterial Culture Collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 204 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 205 Books, Chapters, and Review Articles. . . . . . . . . . . . . . . . . . . . . . . . . . . 205 Original Publications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 SUbject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 List of Contributors Budzikiewicz, Prof. Dr. H., Institut fur Organische Chemie, Universitat zu Kiiln, GreinstraBe 4, D-50939 Kiiln, Germany, e-mail: [email protected] Flessner, Prof. Dr. T., Bayer HealthCare AG, Pharma Research, D-42096 Wuppertal, Germany, e-mail: [email protected] Jautelat, Dr. R., Medicinal Chemistry, Research Center Europe, Schering AG, D-13342 Berlin, Germany, e-mail: [email protected] Scholz, Dr. U., Bayer Chemicals AG, Fine Chemicals, D-51368 Leverkusen, Germany, e-mail: [email protected] Winterfeldt, Prof. Dr. Dr. h. c. E., Institut fur Organische Chemie, UniversiHit Hannover, D-30167 Hannover, Germany, e-mail: [email protected] Cephalostatin Analogues - Synthesis and Biological Activity Timo Flessner!, Rolf Jautelat2, Ulrich Scholz3, and Ekkehard Winterfeldt4 1 Pharma Research, Bayer HealthCare AG, Wuppertal, Gennany* 2 Medicinal Chemistry, Schering AG, Berlin, Gennany* 3 Central Research, Bayer Chemicals AG, Leverkusen, Gennany* 4Institut fiir Organische Chemie der Universitiit Hannover, Hannover, Gennany Contents 1. Introduction 2. Synthesis of Bissteroidal Pyrazines ............................. 15 2.1. Synthesis of Symmetrical Pyrazines and Subsequent Desymmetrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2. Directed Synthesis of Unsymmetrical Pyrazines ................. 28 2.2.1. Nonacyclic Cephalostatin Analogues .................... 37 2.2.2. Dienes ......................................... 39 3. A-D-Ring Functionalization .................................. 42 3.1. Introduction of the Steroidal .6,14.15 -Bond ..................... 44 3.2. Chemical Modifications on the .6,14,15_ Double Bond ............. 56 4. The Spiroketal Area of CephaJostatins . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5. Summary ............................................... 70 Acknowledgements .......................................... 74 References ................................................ 75 1. Introduction The cephalostatin field started off with the seminal publication of Pettit et ai. in 1988 describing structure and biological activity of cephalostatin 1 (1) (84). Since then several reviews have covered the activities regarding isolation, structure elucidation, biological activities, and synthetic efforts up to 1995 (1, 2, 34-36, 54, 111). This account will focus on the synthesis and biological activity of cephalostatin analogues as published until early 2002. The authors understand the *Current address. 2 T. Flessner et al. purpose of this review to provide a complete overview of the cephalostatinJritterazine analogue field. However, this article will in parts be biased to describe some work of the Winterfeldt group in more detail, based on the personal experience of the authors. Natural products from a wide variety of sources have always played an important role in medical treatment. Either these compounds or their derivatives are employed as drugs or as starting points for diverging drug discovery programs or as tools to investigate and elucidate novel targets for the treatment of diseases. In this respect at least one third of the currently available drugs are based on natural products or close derivatives and numerous prominent "synthetic drugs" would have not been found without natural products leading the way. In 1955, the National Cancer Institute (NCI) started a large program aimed at identifying novel compounds possessing anti-tumor effects. Based on the excellent track record of natural products, a substantial part of these efforts was directed towards natural products and only from 1955 to 1980 approximately 130000 extracts from plants and animals were examined. In 1974 extracts originating from the marine worm Cephalodiscus gilchristi, which was collected from the bottom of the Indian Ocean along the South-African coast in 1972, showed tumor inhibiting properties in the in vivo P388 model of murine lymphozytic leukemia (32-41% life time extension at 25-37.5mg/kg) (84), the standard NCI model at that time. The group of G. Pettit from Arizona State University proceeded with further investigations and finally reported the identification, isolation, and structural elucidation of cephalostatin 1 (1) in 1988 (84). This compound was the major carrier of activity in the Cephalodiscus gilchristi extracts. Cephalostatin 1 (1) compromises one of the most potent tumor cell growth inhibiting agents ever tested at the NCI. Its EDso in the in vitro P388 murine leukemia cell assay is outstandingly low at around 0.1 pM and the GIso values in the NCI's in vitro 60 cell line panel (NCI number of cephalostatin 1 (1) is: S363979, data available on the Internet (117)) - which followed the in vivo P388 model as the initial screening system of the NCI in the early 90's - are an average of approx. 1 nM, making 1 approximately 25 times more potent than the extraordinary strong cytostatic Taxol in this assay system (NCI number: NSC125973, data available via Internet (117)). During succeeding years the Pettit group was able to add cephalo statins 2 to 19 to this novel class of compounds. These new cephalo statins possessed varying biological activities, with most displaying average GIso values in the NCI panel in the low nanomolar range (see References, pp. 75-80 Cephalostatin Analogues 3 gS,P~12 .... N o 12' 'x0,~" 0 ~ W. 22.' Cephalostatin 1 (1) 23'OH H - "0 o N ::"... HI'" ~OO HO N'" OH HO HO 0 OH ~.oo ~ OH Ritterazine B (2) OSW-1 (3) OO~~OM e ,\' - Fig. 1. Biologically active bissteroidal pyrazines and the closely related OSW-l Table 1 for detailed information), but none reached the potency of cephalostatin 1 (1) (62, 85-87, 91-93, 96, 98). Based on this discovery of the novel cephalostatins with outstanding biological activity the Pettit group submitted several patent applications early on (88-90, 95). In 1994 the group of Fusetani from the University of Tokyo added the so-called ritterazines, e.g., ritterazine B (2), to the arsenal of cephalostatins and bissteroidal pyrazines in general (27). The ritterazines were isolated from the tunic ate Ritterella tokioka from the coastline of Japan - therefore in a completely different phylum more than 5000 miles away from the discovery point of the cephalostatins. Intrigeously similar in molecular architecture, the ritterazines as well show tumor cell growth inhibiting properties in vitro in the low nanomolar range in the NCI panel-analogous to the cephalostatins (but in a reduced degree towards P388 cells; see Table 1). To date 26 ritterazines have been reported by the Fusetani group (27-33). Cephalostatins and ritterazines clearly define a common class and are tightly interwoven. In fact, cephalostatin 7 and cephalostatin 16 on the one hand and ritterazine J, K, L, and M on the other share the same steroidal moiety (South 7; see Table 1). This leaves space for the assumption that a symbiotic microorganism may be responsible for the production of such tightly related compounds with no