ebook img

Progress in the Chemistry of Organic Natural Products 101 PDF

236 Pages·2016·8.001 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Progress in the Chemistry of Organic Natural Products 101

Progress in the Chemistry of Organic Natural Products A. Douglas Kinghorn Heinz Falk Simon Gibbons Jun’ichi Kobayashi Editors  Progress in the Chemistry of Organic Natural Products Progress in the Chemistry of Organic Natural Products FoundedbyLa´szl(cid:1)oZechmeister SeriesEditors A.DouglasKinghorn,Columbus,OH,USA HeinzFalk,Linz,Austria SimonGibbons,London,UK Jun’ichiKobayashi,Sapporo,Japan HonoraryEditor WernerHerz,Tallahassee,FL,USA EditorialBoard GiovanniAppendino,Novara,Italy VerenaDirsch,Vienna,Austria NicholasH.Oberlies,Greensboro,NC,USA YangYe,Shanghai,PRChina More information about this series at http://www.springer.com/series/10169 A. Douglas Kinghorn (cid:129) Heinz Falk (cid:129) Simon Gibbons (cid:129) Jun’ichi Kobayashi Editors Progress in the Chemistry of Organic Natural Products Volume 101 With contributions by (cid:1) S.-G. Liao J.-M. Yue (cid:1) (cid:1) (cid:1) (cid:1) F.-R.Chang C.-C.Liaw J.-R.Liou T.-Y.Wu Y.-C.Wu Editors A.DouglasKinghorn HeinzFalk Div.MedicinalChemistry&Pharmacognosy InstituteofOrganicChemistry TheOhioStateUniversity JohannesKeplerUniversity CollegeofPharmacy Linz,Austria Columbus,OH,USA SimonGibbons Jun’ichiKobayashi ResearchDepartmentofPharmaceuticaland GraduateSchoolofPharmaceutical BiologicalChemistry Science UCLSchoolofPharmacy HokkaidoUniversity London,UnitedKingdom Sapporo,Japan ISSN2191-7043 ISSN2192-4309 (electronic) ProgressintheChemistryofOrganicNaturalProducts ISBN978-3-319-22691-0 ISBN978-3-319-22692-7 (eBook) DOI10.1007/978-3-319-22692-7 LibraryofCongressControlNumber:2015957989 SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.springer.com) Contents DimericSesquiterpenoids. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . 1 Shang-GaoLiaoandJian-MinYue AcetogeninsfromAnnonaceae. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Chih-ChuangLiaw,Jing-RuLiou,Tung-YingWu,Fang-RongChang, andYang-ChangWu ListedinPubMed v Dimeric Sesquiterpenoids Shang-GaoLiaoandJian-MinYue Contents 1 Introduction................................................................................... 2 2 ClassificationandDistribution............................................................... 3 2.1 DisesquiterpenoidDSs................................................................. 4 2.1.1 BisabolaneDisesquiterpenoids............................................... 4 2.1.2 GermacraneDisesquiterpenoids.............................................. 5 2.1.3 Guaiane,Pseudoguaiane,andXanthaneDisesquiterpenoids............... 6 2.1.4 EremophilaneDisesquiterpenoids............................................ 10 2.1.5 CadinaneDisesquiterpenoids................................................. 13 2.1.6 EudesmaneDisesquiterpenoids.............................................. 14 2.1.7 LindenaneDisesquiterpenoids............................................... 15 2.1.8 Cuparane,Cyclolaurane,andHerbertaneDisesquiterpenoids.............. 17 2.1.9 MiscellaneousDisesquiterpenoids........................................... 19 2.1.10 CompoundDisesquiterpenoids............................................... 23 2.2 Pseudo-disesquiterpenoids............................................................. 26 2.2.1 DimericAza-sesquiterpenoids................................................. 26 2.2.2 MiscellaneousPseudo-disesquiterpenoids.................................... 27 3 StructuralElucidation........................................................................ 33 3.1 General................................................................................. 33 3.2 MassSpectrometry..................................................................... 33 3.3 NuclearMagneticResonanceSpectroscopy.......................................... 36 3.4 Single-CrystalX-RayDiffraction..................................................... 37 S.-G.Liao SchoolofPharmacy,GuizhouMedicalUniversity,ZhangjiangHi-TechPark,Shanghai 201203,People’sRepublicofChina EngineeringResearchCenterfortheDevelopmentandApplicationofEthnicMedicine andTCM(MinistryofEducation),SchoolofPharmacy,GuizhouMedicalUniversity, Guizhou550004,People’sRepublicofChina e-mail:[email protected] J.-M.Yue(*) SchoolofPharmacy,GuizhouMedicalUniversity,ZhangjiangHi-TechPark,Shanghai 201203,People’sRepublicofChina e-mail:[email protected] ©SpringerInternationalPublishingSwitzerland2016 1 A.D.Kinghorn,H.Falk,S.Gibbons,J.Kobayashi(eds.),ProgressintheChemistry ofOrganicNaturalProducts,Vol.101,DOI10.1007/978-3-319-22692-7_1 2 S.-G.LiaoandJ.-M.Yue 3.5 CDandECDCalculations............................................................. 38 3.6 ChemicalMethods..................................................................... 39 3.7 StructuralElucidationofSerratustoneA.............................................. 41 4 BiologicalActivity........................................................................... 45 4.1 CytotoxicandAntitumorActivity..................................................... 45 4.2 Anti-inflammatoryActivity............................................................ 59 4.3 ImmunosuppressiveActivity.......................................................... 66 4.4 PotassiumChannelBlockingandCardiovascularActivity........................... 67 4.5 Antimalarial,Antiprotozoal,Antibacterial,Antifungal,andAntiviralActivity..... 69 4.6 NeurotrophicActivity.................................................................. 72 4.7 MiscellaneousActivities............................................................... 73 5 Synthesis...................................................................................... 74 5.1 Biogenesis.............................................................................. 75 5.1.1 [4+2]Diels–AlderReactions................................................. 75 5.1.2 [2+2]Cycloadditionand[6+6]Cycloaddition.............................. 82 5.1.3 RadicalReactions.............................................................. 83 5.1.4 AldolReactions................................................................ 84 5.1.5 Esterification,Etherification,andAcetal-FormationReactions.............. 85 5.1.6 DimerizationThroughaLinker............................................... 85 5.1.7 Michael-TypeReactions....................................................... 86 5.2 ChemicalSynthesis.................................................................... 87 5.2.1 Diels–AlderCycloaddition.................................................... 87 5.2.2 OxidativeCoupling............................................................ 93 5.2.3 DimerizationwithLinkers..................................................... 95 5.2.4 MiscellaneousDimerizationMethods......................................... 96 6 Conclusions................................................................................... 98 References........................................................................................ 98 1 Introduction It is widely accepted that a large number of proteins responsible for cellular functionexistasdimers(hetero-orhomo-)orneedtobeactivatedbydimerization before mediatingcertain signaling pathways[1,2]. Simultaneously targeting both monomericmoietiesofthedimericproteinshasshownpotentialinthedevelopment of various therapeutic agents [3–5]. As natural or synthetic dimeric molecules mightbeabletoactonbothmoietiesofadimericprotein,dimericsesquiterpenoids (DSs), which are generated biogenetically from coupling of two sesquiterpenoid molecules(eitheridenticalordifferent),areinessencepotentialbiologicallyactive molecules and have attracted great attention in recent years for their particular structuresandbiologicalactivities.Withacompositionofatleast30carbons,and their generation from sesquiterpenoids of a variety of structural types, and in showing variations of the connecting patterns of the two identical (for homo-DS) ordifferent(forhetero-DS)sesquiterpenoidunits,thismakestheelucidationofDS structuresandtheirsyntheticconstructionquitechallenging.Moreover,thebiolog- icaleffectsoftheDSs,particularlytheirpotentialanti-inflammatory,antimalarial, DimericSesquiterpenoids 3 antitumor, antiviral, immunosuppressive, neurotropic, and potassium channel blockingactivities,haverenderedthesemoleculespromisingcandidatesforfurther drugdevelopment.AgeneraltrendobservedisthatsomeDSsaremorepotentthan theirmonomericprecursorsformanybiologicalactivities. Two recent reviews have been written by Zhan et al. [6] and Lian and Yu [7], covering the isolation, structural determination, biological activities, biogenesis, andsynthesisofnaturalDSsuptoJune2010. Inthiscontribution,ageneralviewoftheclassificationanddistributionofDSs (including those reported recently) will be provided. Strategies for the structural elucidationofDSsandtheiranalogueswillbepresented.Chemicaleffortstoward the construction of DSs, particularly strategies for the convergence of the two sesquiterpenoid units, will be reviewed. Moreover, the biological activities of DSs will be discussed under each type of activity for the purposes of providing informationregardingthestructuralfeaturesrequiredbytheirtargetproteins. 2 Classification and Distribution Based on coupling patterns and structural features of the two constitutional sesquiterpenoid units, DSs can be classified into disesquiterpenoids (type A) and pseudo-disesquiterpenoids (type B) [6]. In type A, two sesquiterpenoid units are connecteddirectlybyatleastoneC–Cbond.Incontrast,intypeB,thetwounitsare changedtotwoaza-sesquiterpenoidmoieties,orareconnectedbyanestergroup,an O-/S-etherlinkage,oneortwoamidegroups,oranitrogen/ureagroup.Dimeroses- quiterpenoids [6], which originate from coupling of two merosesquiterpenoids that are biogenetically formed from direct carbon-carbon connection of a sesquiterpenoidandanonsesquiterpenoid,arenotincludedamongtheDSgroup. Taking into consideration the structural types of monomeric sesquiterpenoids, disesquiterpenoids (type A) can also be classified into bisabolane, germacrane, guaiane, eremophilane, cadinane, eudesmane, lindenane, miscellaneous sesquiter- pene, and compound disesquiterpenoids. Compound disesquiterpenoids refer to those DSs that are formed by coupling of two sesquiterpenoid units of different structuraltypes.Pseudo-disesquiterpenoids(typeB)mayalsohavesimilarconstitu- tions,butwillnotbediscussedinthisrespect.Itshouldbenotedthatsincenon-carbon- carbon-connected pseudo-disesquiterpenoids are more prone to metabolism to the constitutionalmonomersortheirderivativesbeforereachingthetargetproteins,DSs oftypeAanddimericaza-sesquiterpenoidsseemtobeofgreateroverallimportance. 4 S.-G.LiaoandJ.-M.Yue 2.1 Disesquiterpenoid DSs 2.1.1 BisabolaneDisesquiterpenoids Dimeric sesquiterpenoids of this type are generally present in either the Plantae (plant)orAnimalia(sponge)kingdoms(Table1).ThegeneraPerezia,Coreocarpus, andBaccharisfromtheAsteraceaeandthegenusMeiogynefromtheAnnonaceaein the plant kingdom, as well as Axinyssa (Halichondriidae) and Lipastrotethya (Dictyonellidae)intheanimalkingdomarereportedtoproducebisabolanedisesqui- terpenoids.However,onebisabolanedisesquiterpenoid,disydonolC(1),hasbeen reportedtooccurinamarine-derivedfungus(Aspergillussp.)(Fig.1)[13]. Table1 BisabolaneDSs Compound Origin Family Kingdom Ref. Bacchopetiolone Baccharis Asteraceae Plant [8] petiolata 60,6-Bis-2-(1,5-dimethyl-1,4- Coreocarpus Asteraceae Plant [9] benzoquinone arizonicus 60,6-Bis-2-(1,5-dimethyl-4-hexenyl-6- Coreocarpus Asteraceae Plant [9] isovaleroxy)-3-hydroxy-5-methyl-1,4- arizonicus benzoquinone cis-DimerA Axinyssa Halichondriidae Animal [10] variabilis (sponge) cis-DimerA Lipastrotethya Dictyonellidae Animal [10] ana cis-DimerB Axinyssa Halichondriidae Animal [10] variabilis cis-DimerB Lipastrotethya Dictyonellidae Animal [10] ana DicurcuphenolsA–E Didiscus Heteroxyidae Animal [11] aceratus (sponge) Diperezone/biperezone Coreocarpus Asteraceae Plant [9] arizonicus Diperezone/biperezone Perezia Asteraceae Plant [12] alamanivar. oolepis DisydonolC(1) Aspergillussp. Trichocomaceae Fungi [13] 1-epi-MeiogyninA Meiogyne Annonaceae Plant [14] cylindrocarpa MeiogyninA Meiogyne Annonaceae Plant [14] cylindrocarpa trans-DimerC Lipastrotethya Dictyonellidae Animal [10] ana trans-DimerC Axinyssa Halichondriidae Animal [15] variabilis trans-DimerD Axinyssa Halichondriidae Animal [15] variabilis

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.