ebook img

Progress in Nonlinear Nano-Optics PDF

279 Pages·2015·10.665 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Progress in Nonlinear Nano-Optics

Nano-Optics and Nanophotonics Shuji Sakabe Christoph Lienau Rüdiger Grunwald Editors Progress in Nonlinear Nano-Optics Nano-Optics and Nanophotonics Editor-in-Chief Motoichi Ohtsu, Tokyo, Japan Editorial Board Gunnar Björk, Kista, Sweden Hirokazu Hori, Kofu, Yamanashi, Japan Chennupati Jagadish, Canberra, ACT, Australia Christoph Lienau, Oldenburg, Germany Lih Y. Lin, Seattle, WA, USA Erich Runge, Ilmenau, Germany Frank Träger, Kassel, Germany Masaru Tsukada, Aoba-ku, Sendai, Japan The Springer Series in Nano-Optics and Nanophotonics provides an expanding selection of research monographs in the area of nano-optics and nanophotonics, science-andtechnology-basedonopticalinteractionsofmatterinthenanoscaleand related topics of contemporary interest. With this broad coverage of topics, the series is of use to all research scientists, engineers and graduate students who needup-to-datereferencebooks.Theeditorsencourageprospectiveauthorstocorre- spondwiththeminadvanceofsubmittingamanuscript.Submissionofmanuscripts shouldbemadetotheeditor-in-chief,oneoftheeditorsortoSpringer. More information about this series at http://www.springer.com/series/8765 Shuji Sakabe Christoph Lienau (cid:129) ü R diger Grunwald Editors Progress in Nonlinear Nano-Optics 123 Editors ShujiSakabe Rüdiger Grunwald InstituteforChemical Research, Max BornInstituteforNonlinear Optics LaboratoryforLaser Matter Science andShort-Pulse Spectroscopy KyotoUniversity Berlin Kyoto Germany Japan Christoph Lienau Institutfür Physik Carl-von-Ossietzky Universität Oldenburg Germany ISSN 2192-1970 ISSN 2192-1989 (electronic) Nano-Opticsand Nanophotonics ISBN 978-3-319-12216-8 ISBN 978-3-319-12217-5 (eBook) DOI 10.1007/978-3-319-12217-5 LibraryofCongressControlNumber:2014957154 SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.springer.com) Preface Nanostructures can have quite amazing linear and especially nonlinear optical properties. Metallicnanoparticles,for instance, can localize visible light on ascale of a few nanometers only in the form of surface plasmon excitations. This light localization is of key importance for a plethora of fundamentally relevant appli- cationsrangingfromcancertherapyandwatersplittingorphotocatalysisingeneral to single molecule (bio-)sensing. When using such nanoparticles for localizing femtosecondlightpulses,localfieldintensitiesareeasilyreachedthataresufficient to generate high harmonic radiation or to propel electrons out of these particles, generating new nanoscale sources of femtosecond electron bunches of potential interest for future applications in ultrahigh time-resolution electron microscopy or diffraction. Semiconductor nanoparticles offer particularly strong optical nonlin- earities and are key elements in next generation light emitting diodes and nanola- sers. Moreover, they are of prime interest as biolabels. When combined with metallic nanostructures, new functionality arises, as the strong optical dipole cou- plingbetweensemiconductorexcitonsandmetalplasmonsformsshort-livedhybrid polariton excitations that may be useful in ultrafast switching applications or for designing new classes of photonic transistors with unprecedented sensitivity. Polymericnanomaterialsarenotonlyformingthebasisoforganicphotonics.When illuminated with focused femtosecond laser pulses, multiphoton polymerization is inducedandthisisthebasisforsculptingthree-dimensionalstructureswithaspatial resolution of 100 nm or even below. Driven by these and other exciting potential applications, nonlinear nano-optics isanextremelyrapidlydevelopingfieldofresearchinphotonics.Itistheaimofthis smallbooktoprovideaninsightintosomeofthecurrentactivitiesinthisemerging field. The idea of the book was born at the 2nd International Workshop on “Nonlinear Nanostructures for Ultrafast Laser Applications” at Max-Born-Institute inBerlin2011,whichsucceededanearliermeetingwithatighterfocusonZnOand TiO nanostructures. These events brought together some of the leading experts in 2 nonlinearnanophotonicsandstimulatedtheexchangeofideasandresultsonfurther conferencesandmeetings,e.g.,inthecommunityoflaser-inducedperiodicsurface structures, and in joint research projects of some of the authors. v vi Preface A book project on this extremely fast developing field is inevitably faced with the difficulty of a strict selection. The editors decided to include 14 chapters cov- ering experimental aswellastheoreticalstudies inthree different divisions: Laser- Induced Nanostructures, Nonlinear Nano-Optics, and Advanced Theoretical Studies.Thespectrumofthecontributionsaddressessomeofthetopicsdiscussedat the Berlin Workshop as well as very recent continuing activities. In the first division, Varlamova et al. give an overview of the self-organized pattern formation upon femtosecond laser ablation of dielectrics, and Kazansky et al. introduce the exciting prospects of polarization-shaped laser pulses for laser writing in dielectrics. Also, the remaining four chapters in this division focus on laser-induced writing in semiconductors: Silicon (Richter et al.), TiO2 (Kumar Das et al.), dielectrics (Höhm et al.), and metals (Sakabe et al.). Theseconddivisiongivesabroadoverviewofrecentlyemergingapplicationsin nonlinear nano-optics. Vogelgesang et al. start by introducing the very interesting optical properties of polariton excitations in strongly coupled metal/semiconductor nanostructures. Kabouraki et al. explain how to sculpt almost arbitrary three- dimensional nanostructures with sub-100 nm precision by multiphoton polymeri- zation. Hentschel et al. give a clear presentation of the surprising success of a nonlinear oscillator model in quantitatively predicting nonlinear optical spectra of plasmonic nanoantennas. The part Photoemission and Nonlinear Spectroscopy in this division starts with a chapter by Herink et al., introducing recently discovered phenomena in strong field emission of electron pulses from sharp gold tips. It is followed by a presentation by Kumar Das et al. comparing linear and nonlinear optical properties of zinc oxide nanorods, and an article by Messaoudi et al. on using laser-written periodic nanostructures in metals for surface-enhanced Raman sensing of biomolecules. The third division summarizes recent theoretical developments in this field. Manley et al. give a concise overview of the optical properties of metallic nano- particles, their numerical simulation, and possible applications in plasmon- enhanced solar cells before, in the final chapter, Husakou et al. present a funda- mentally interesting analysis of laser-driven high harmonic generation in various metallic nanoantennas. We trust that this small collection of chapters gives an interesting overview of the current status of research in nonlinear nano-optics and will stimulate the reader to dig deeper into the rapidly growing original literature in this emerging field.Wealsohopethatitprovidesafirmideaofhowmuchmorefundamentaland appliedresearchisurgentlyneededtouncoverthefullpotentialofnonlinearnano- optics in such diverse areas as physics, chemistry, materials science, measurement technology, and biomedicine. We close this preface by expressing our sincere thanks to the German Ministry of Education and Research (BMBF) and to all other sponsors for financial support ofthismeetingandtoallcoauthorsofthisbookfortheirimportantcontributionsto Preface vii thisbook.VeryspecialthanksarealsoduetoClausAscheronfromSpringerforhis expert editorial advice and to Prof. Thomas Elsässer for very substantial support andthegeneroushospitalityatMax-Born-Institute.Mostofall,weareverygrateful for having experienced the spirit of a fruitful and inspiring collaboration with colleagues from many parts of the world. Kyoto Shuji Sakabe Oldenburg Christoph Lienau Berlin Rüdiger Grunwald Contents Part I Laser-Induced Nanostructures: General Aspects and Structuring in Three Dimensions 1 Self-organized Surface Patterns Originating from Laser-Induced Instability . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Olga Varlamova, Juergen Reif, Sergey Varlamov and Michael Bestehorn 1.1 Self-organized Laser-Induced Surface Structures. . . . . . . . . . . 4 1.1.1 Experimental Observations. . . . . . . . . . . . . . . . . . . . 4 1.1.2 Modeling of Ripples Formation . . . . . . . . . . . . . . . . 6 1.1.3 Self-organization as Origin of LIPSS. . . . . . . . . . . . . 7 1.2 Laser Polarization in the Model of Self-organization. . . . . . . . 13 1.2.1 Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.2.2 Linear Stability Analysis . . . . . . . . . . . . . . . . . . . . . 19 1.2.3 Morphological Diagram for the Ripple Orientation . . . 21 1.2.4 Nonlinear Regime. . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.2.5 Influence of Polarization . . . . . . . . . . . . . . . . . . . . . 23 1.2.6 Period of Numerically Calculated Pattern. . . . . . . . . . 24 1.2.7 Time Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.3 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 Harnessing Ultrafast Laser Induced Nanostructures in Transparent Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Martynas Beresna, Mindaugas Gecevičius and Peter G. Kazansky 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2 Cylindrical Vector Beams . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.3 Polarization Converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.4 Fabrication and Characterization. . . . . . . . . . . . . . . . . . . . . . 39 ix x Contents 2.5 5D Optical Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.6 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Part II Laser-Induced Nanostructures: Nanostructure Formation in Semiconductors and Dielectrics 3 Nanogratings in Fused Silica: Structure, Formation and Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Sören Richter, Matthias Heinrich, Felix Zimmermann, Christian Vetter, Andreas Tünnermann and Stefan Nolte 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2.1 Nanograting Inscription. . . . . . . . . . . . . . . . . . . . . . 51 3.2.2 Conventional Characterization Techniques. . . . . . . . . 52 3.2.3 Small Angle X-ray Scattering. . . . . . . . . . . . . . . . . . 53 3.3 Experimental Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3.1 Fundamental Structure of Nanogratings. . . . . . . . . . . 55 3.3.2 Processing Parameter Window for Nanograting Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.3.3 Evolutional Stages of Nanograting Growth. . . . . . . . . 58 3.3.4 Cumulative Action of Laser Pulses. . . . . . . . . . . . . . 61 3.4 Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.4.1 Retardation Control. . . . . . . . . . . . . . . . . . . . . . . . . 63 3.4.2 Wave Plates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.4.3 Generation of Cylindric Vector Beams . . . . . . . . . . . 65 3.4.4 Polarization-Coded Wave Plates. . . . . . . . . . . . . . . . 67 3.5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4 Femtosecond-Laser Induced Nanostructures in TiO . . . . . . . . . . 73 2 Susanta Kumar Das, Hamza Messaoudi, Kiran Dasari, Wolfgang Seeber and Rüdiger Grunwald 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2 Methods of LIPSS Generation in Scanning Mode. . . . . . . . . . 74 4.3 Roughness and Initial Stages of fs-LIPSS in TiO 2 Bulk Crystals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.4 Experimental Results with Line Focus and Moving Substrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.5 Theoretical Estimation of the Optical Constants . . . . . . . . . . . 78 4.6 Generation of Uniform LIPSS Areas in Thin TiO Films. . . . . 78 2 4.7 Conclusions and Outlook. . . . . . . . . . . . . . . . . . . . . . . . . . . 81 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.