ProgressinInorganicChemistry,Vol.51 EditedbyKennethD.Karlin Copyright2002JohnWiley&Sons,Inc. ISBN:0-471-26534-9 Progress in Inorganic Chemistry Volume 51 Advisory Board JACQUELINE K.BARTON CALIFORNIAINSTITUTEOF TECHNOLOGY,PASADENA,CALIFORNIA THEODOREJ.BROWN UNIVERSITYOFILLINOIS,URBANA,ILLINOIS JAMES P.COLLMAN STANFORD UNIVERSITY,STANFORD,CALIFORNIA F.ALBERTCOTTON TEXASA&MUNIVERSITY,COLLEGE STATION,TEXAS ALANH.COWLEY UNIVERSITYOFTEXAS,AUSTIN,TEXAS RICHARDH.HOLM HARVARDUNIVERSITY,CAMBRIDGE, MASSACHUSETTS EIICHIKIMURA HIROSHIMAUNIVERSITY,HIROSHIMA,JAPAN NATHANS.LEWIS CALIFORNIAINSITITUTE OFTECHNOLOGY,PASADENA,CALIFORNIA STEPHENJ.LIPPARD MASSACHUSETTSINSTITUTEOFTECHNOLOGY,CAMBRIDGE, MASSACHUSETTS TOBINJ.MARKS NORTHWESTERN UNIVERSITY,EVANSTON,ILLINOIS EDWARDI.STIEFEL EXXONMOBILRESEARCH&ENGINEERINGCO.,ANNANDALE,NEWJERSEY KARLWIEGHARDT MAX-PLANCK-INSTITUT,MU¨LHEIM,GERMANY PROGRESS IN INORGANIC CHEMISTRY Edited by KENNETH D. KARLIN DepartmentofChemistry Johns Hopkins University Baltimore, Maryland VOLUME 51 AN INTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. CoverIllustrationor‘‘amolecularferricwheel’’wasadaptedfromTaft.K.L.andLippard.S.J., J.Am.Chem.Soc.,1990.112,9629. Copyright#2003byJohnWiley&Sons,Inc.Allrightsreserved. PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey. PublishedsimultaneouslyinCanada. Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinany formorbyanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise, exceptaspermittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,withouteither thepriorwrittenpermissionofthePublisher,orauthorizationthroughpaymentoftheappropriate per-copyfeetotheCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers,MA01923, 978-750-8400,fax978-750-4470,oronthewebatwww.copyright.com.RequeststothePublisher forpermissionshouldbeaddressedtothePermissionsDepartment,JohnWiley&Sons,Inc., 111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008, e-mail:[email protected]. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbest effortsinpreparingthisbook,theymakenorepresentationsorwarrantieswithrespecttothe accuracyorcompletenessofthecontentsofthisbookandspecificallydisclaimanyimplied warrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedor extendedbysalesrepresentativesorwrittensalesmaterials.Theadviceandstrategiescontained hereinmaynotbesuitableforyoursituation.Youshouldconsultwithaprofessionalwhere appropriate.Neitherthepublishernorauthorshallbeliableforanylossofprofitoranyother commercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orother damages. ForgeneralinformationonourotherproductsandservicespleasecontactourCustomerCare DepartmentwithintheU.S.at877-762-2974,outsidetheU.S.at317-572-3993orfax317-572-4002. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprint, however,maynotbeavailableinelectronicformat. LibraryofCongressCatalogCardNumber59-13035 ISBN0-471-26534-9 PrintedintheUnitedStatesofAmerica 10 9 8 7 6 5 4 3 2 1 Contents Chapter 1 Fundamental Coordination Chemistry, Environmental Chemistry, and Biochemistry of Lead(II) 1 Elizabeth S. Claudio, Hilary Arnold Goldwin, and John S. Magyar Chapter 2 Chromium in Biology: Toxicology and Nutritional Aspects 145 Aviva Levina, Rachel Codd, Carolyn T. Dillon, and Peter A. Lay Chapter 3 Laterally Nonsymmetric Aza-Cryptands 251 Parimal K. Bharadwaj Chapter 4 Coordination Complexes in Sol–Gel Silica Materials 333 Stephen P. Watton, Colleen M. Taylor, Grant M. Kloster, and Stephanie C. Bowman Chapter 5 Crystal Chemistry of Organically Templated Vanadium Phosphates and Organophosphonates 421 Robert C. Finn, Robert C. Haushalter, and Jon Zubieta Subject Index 603 Cumulative Index, Volumes 1–51 625 v Progress in Inorganic Chemistry Volume 51 KCALB NAYC GAM OLEY DR c/4 T&W_tresni 122-1572 2_EGAP 2_EGAP K Y M mistry,Vol.51nethD.Karliny&Sons,Inc.0-471-26534-9 C ProgressinInorganicCheEditedbyKen2002JohnWileCopyrightISBN: KKKCMCMYYY chemistry of lead,” pp. 223-227, Copyright ©2001, with permission from Elsevier Science.241, 243, 246). Figure adapted from Curr. Opin. Chem. Biol.,Vol. 5, H.A. Godwin, “The biologicalwhere necessary, lead was added to the figure based upon coordinates provided by the authors (240,thiol-rich zinc sites. Structures downloaded from the protein databank (3CLN, 1RSY, 1AW5, 1QNV);coordination environments preferred by lead, which can bind both to carboxylate-rich calcium sites andzinc protein -aminolevulinic acid dehydratase, ALAD. These structures provide useful insights into the(cid:1)structures of a variety of protein including the calcium proteins calmodulin and synaptotagmin and theFigure 17.Lead has been used as a heavy atom derivative to solve the phase problem in the crystal chemistry of lead,” pp. 223-227, Copyright ©2001, with permission from Elsevier Science.241, 243, 246). Figure adapted from Curr. Opin. Chem. Biol.,Vol. 5, H.A. Godwin, “The biologicalwhere necessary, lead was added to the figure based upon coordinates provided by the authors (240,thiol-rich zinc sites. Structures downloaded from the protein databank (3CLN, 1RSY, 1AW5, 1QNV);coordination environments preferred by lead, which can bind both to carboxylate-rich calcium sites and-aminolevulinic acid dehydratase, ALAD. These structures provide useful insights into thezinc protein (cid:1)structures of a variety of protein including the calcium proteins calmodulin and synaptotagmin and theFigure 17.Lead has been used as a heavy atom derivative to solve the phase problem in the crystal M C K Y M ProgressinInorganicChemistry,Vol.51 C EditedbyKennethD.Karlin Copyright2002JohnWiley&Sons,Inc. (a) ISBN:0-471-26534-9 (a) K Y M C K Y (b) (b) M C O D1 7 O D1 7 O D1 7 O D1 7 K O O O O O O O O on 2 O P O H O Pb O P O HO Pb O P O H O Pb O P O HO Pb stati Y OO G1 8 H H O OG1 8 H OO G1 8 H H O OG1 8 H k r o W M O H O H O H O H M A C 0 5 : 9 3 K Figure 16. Lead was used as a heavy atom derivative to solve the structure of (a) tRNAPhe(lead shown Figure 16. Lead was used as a heavy atom derivative to solve the structure of (a) tRNAPhe(lead shown 0 as large space-filling blue spheres) (224, 225). The observation that (b) Pb(II) catalyzed cleavage of as large space-filling blue spheres) (224, 225). The observation that (b) Pb(II) catalyzed cleavage of 20 the sugar-phosphate backbone in this structure was a critical development in the field of catalytic RNA the sugar-phosphate backbone in this structure was a critical development in the field of catalytic RNA 1, and lead to the widely cited hypothesis that Pb(II) targets nucleic acids. The coordinates for the and lead to the widely cited hypothesis that Pb(II) targets nucleic acids. The coordinates for the 3 Y PhtRNAPhestructure (a) were downloaded from the protein databank (1TN2); [Part (b) was adapted PhtRNAPhestructure (a) were downloaded from the protein databank (1TN2); [Part (b) was adapted n fro3m (227).] fro3m (227).] a J M C K PAGE_1 PAGE_1 1_EGAP 1_EGAP K C M J ].)722( morf ].)722( morf a n detpada saw )b( traP[ ;)2NT1( knabatad nietorp eht morf dedaolnwod erew )a( erutcurtsehPANRt3hP detpada saw )b( traP[ ;)2NT1( knabatad nietorp eht morf dedaolnwod erew )a( erutcurtsehPANRt3hP Y 3 eht rof setanidrooc ehT .sdica cielcun stegrat )II(bP taht sisehtopyh detic ylediw eht ot dael dna eht rof setanidrooc ehT .sdica cielcun stegrat )II(bP taht sisehtopyh detic ylediw eht ot dael dna 1 , ANR citylatac fo dleif eht ni tnempoleved lacitirc a saw erutcurts siht ni enobkcab etahpsohp-ragus eht ANR citylatac fo dleif eht ni tnempoleved lacitirc a saw erutcurts siht ni enobkcab etahpsohp-ragus eht 2 0 fo egavaelc dezylatac )II(bP )b( taht noitavresbo ehT .)522 ,422( )serehps eulb gnillif-ecaps egral sa fo egavaelc dezylatac )II(bP )b( taht noitavresbo ehT .)522 ,422( )serehps eulb gnillif-ecaps egral sa 0 3 nwohs dael(ehPANRt )a( fo erutcurts eht evlos ot evitavired mota yvaeh a sa desu saw daeL .61 erugiF nwohs dael(ehPANRt )a( fo erutcurts eht evlos ot evitavired mota yvaeh a sa desu saw daeL .61 erugiF K 9 : 5 0 A C M H O H O H O H O W M o r k bP OH O8 1GOO O H bP OH 8 1G OO bP OH O8 1GOO O H bP OH 8 1G OO Y statio H P H O P O H P H O P O n 2 O O O O O O O O K 7 1D O 7 1D O 7 1D O 7 1D O C M )b( )b( Y K C M Y K )a( )a( C M Y K C M structures of a variety of protein including the calcium proteins calmodulin and synaptotagmin and the(cid:1)zinc protein -aminolevulinic acid dehydratase, ALAD. These structures provide useful insights into the thiol-rich zinc sites. Structures downloaded from the protein databank (3CLN, 1RSY, 1AW5, 1QNV);where necessary, lead was added to the figure based upon coordinates provided by the authors (240, chemistry of lead,” pp. 223-227, Copyright ©2001, with permission from Elsevier Science. Figure 17.Lead has been used as a heavy atom derivative to solve the phase problem in the crystalstructures of a variety of protein including the calcium proteins calmodulin and synaptotagmin and the(cid:1)zinc protein -aminolevulinic acid dehydratase, ALAD. These structures provide useful insights into thecoordination environments preferred by lead, which can bind both to carboxylate-rich calcium sites andthiol-rich zinc sites. Structures downloaded from the protein databank (3CLN, 1RSY, 1AW5, 1QNV);where necessary, lead was added to the figure based upon coordinates provided by the authors (240,241, 243, 246). Figure adapted from Curr. Opin. Chem. Biol.,Vol. 5, H.A. Godwin, “The biologicalchemistry of lead,” pp. 223-227, Copyright ©2001, with permission from Elsevier Science. YYYCMCMKKK ISBN:0Copyright2002JohnWileyEditedbyKennProgressinInorganicChem C -471-26534-9&Sons,Inc.ethD.Karlinistry,Vol.51 M Y K PAGE_2 PAGE_2 2751-221 insert_W&T 4/c RD YELO MAG CYAN BLACK ProgressinInorganicChemistry,Vol.51 EditedbyKennethD.Karlin Copyright2002JohnWiley&Sons,Inc. ISBN:0-471-26534-9 ProgressinInorganicChemistry,Vol.51 EditedbyKennethD.Karlin Copyright2002JohnWiley&Sons,Inc. ISBN:0-471-26534-9 Fundamental Coordination Chemistry, Environmental Chemistry, and Biochemistry of Lead(II) ELIZABETH S. CLAUDIO, HILARYARNOLD GODWIN,* and JOHN S. MAGYAR Department of Chemistry Northwestern University Evanston, IL CONTENTS I. INTRODUCTION A. WhyStudyLead? B. GeneralPropertiesofLeadandLead(II) 1. IsotopesofLead 2. OxidationStates 3. ElectronicProperties 4. SolubilityandWater-ExchangeRateofLead(II) C. ScopeofThisChapter II. SPECTROSCOPICSTUDIESOFLEAD(II)COMPLEXES A. Introduction B. QuestionsofInterest C. RelativisticEffects D. AbsorptionSpectroscopy 1. IntroductiontoPossibleElectronicTransitionsforLead 2. OpticalElectronegativities 3. Solid-StateAbsorptionSpectra E. PhotoelectronSpectroscopy 1. RelativisticEffectsandtheMythofthe6s2‘‘Inert’’Pair 2. Lead(II)Oxides 3. Lead(II)Halides 4. Lead(II) Chalcogenides *Authortowhomcorrespondenceshouldbeaddressed. 1 2 ELIZABETHS.CLAUDIOETAL. F. VibrationalSpectroscopy(InfraredandRaman) G. NuclearMagneticResonanceSpectroscopy 1. Lead-207Parameters:ChemicalShiftsandCouplingConstants 2. Lead-207NMRSpectroscopyofProteins H. SpectroscopyConclusions III. STRUCTURALSTUDIESONLEAD(II)COMPLEXES A. Introduction B. QuestionsofInterest C. X-RayCrystalStructuresofLead(II)SmallMoleculeComplexes 1. CommonlyObservedDonorGroupsinLead(II)Structures 2. CommonlyObservedCoordinationNumbersandGeometriesinLead(II)Structures 3. TheStructuralEffectsoftheLead(II)6s2ElectronPair 4. StructuralInsightsintotheRationalDesignofChelationTherapyAgents 5. NewTypesofLead(II)Structures D. X-RayCrystalStructuresofLead(II)Biomolecules 1. ComplexesofLead(II)withSmallBiomolecules 2. UseofLeadasaHeavyAtomDerivativeinProteinsandNucleicAcids E. EXAFSStudiesonLead(II)Compounds F. StructuralConclusions IV. KINETICSANDTHERMODYNAMICSOFLEAD–LIGANDINTERACTIONS A. Introduction B. QuestionsofInterest C. KineticsofLead–LigandInteractions 1. SimpleLigand-ExchangeConstants 2. MechanismsandRatesofLead–ChelateAssociationandSubstitutionReactions 3. KineticStudieswithMacrocyclicLigands 4. ImplicationsofKineticStudiesforLead(II)–ProteinInteractions andOtherComplexSystems D. ThermodynamicsofLead–LigandInteractions 1. MethodsforDeterminingLead(II)LigandBindingConstants 2. ThermodynamicsofLead–SmallMoleculeInteractions 3. ThermodynamicStabilityofLead–ProteinInteractions E. ConclusionsaboutLead–LigandThermodynamicsandKinetics V. LEADINTHEENVIRONMENT A. Introduction B. QuestionsofInterest C. LeadMinerals 1. PbS(Galena) 2. PbCO (Cerussite) 3 3. PbO(LithargeandMassicot) 4. PbO (Minium) 3 4 5. PbHPO (Schulterite)andOtherLeadPhosphates 4 D. LeadinSoil E. LeadinAquaticSystems F. EnvironmentalContaminationwithLead:TheHistoricalRecordandGeochemistry