AUTHOR INDEX Brown, A. L. 283 Ma,J . 283 Muzio, L.J. 233 Checkel, M.D. 379 Orme, M. 65 Daily, J. W. 133 Dale. J.D. 379 Quartucy,G.C. 233 Dam-Johansen, K. 349 Rigby, J.R. 283 Fialkov, A.B. 399 Fletcher, T. H. 283 Smoot, L. D. 203 Glarborg, P. 349 Smy, P.R. 379 Stamatelos, A.M. 1 Harb, J.N. 267 Hardalupas, Y. 41 van der Lans, RR. P. 349 Kennedy, 1.M. 95 Koltsakis,G.C. 1 Wang, H. 267 Webb, B. W. 283 Li, S.C. 303 Wunning, J.A. 81 Liu, C. H. 41 Wunning, J.G. 81 KEYWORD INDEX Applications 233 Emission formation 349 Ash deposition 267 Atomisation 41 History 233 Automobile | Laminar stagnation flows 303 Burner 349 Large-scale boiler 267 Catalysis 1 Modeling 267, 349 Chemical reactors | Coal 283 Nitrogen oxide 349 Coalescence 65 NO, control 233 Combustion 349 Comprehensive model 267 Optical measurement 41 Control 233 Phase Doppler velocimeter 41 Droplet trajectories 303 Pulverized coal 349 Droplet collisions 65 Pulverized-coal combustion 267 Droplet size distribution 41 Pyrolysis 283 Droplet velocity 41 Disruption 65 Slagging 267 Soot 283 Emission control | Spray combustion 41, 303 SUBJECT INDEX Absorption, radiation 141-142 Butadiene, soot yields 289 ACERC see Advanced Combustion Engineering Research Center CAAA see Clean Air Act Amendments Acetic acid flames, ionic composition 476 Calibration, LIF spectroscopy 173-174 Acetylene flames Catalysis negative ionic composition 464-467 activity assessment 11-14 positive ionic composition 457-464 alternative fueled engines 21 Advanced Combustion Engineering Research Center (ACERC) automobiles 1-39 201 catalyst types 7-8 decade of contributions 203-232 converters 380 education 226-228 deactivation 14—16 future 228-229 diesel engines 25-33 industrial collaboration 226-228 exhaust aftertreatment 1-39 research program 207-226 Fast Light-o Techniques 16-21 Aerodynamics influence, nitrogen oxide formation 361-369 lean burn engines 33-34 Aftertreatment, catalytic automotive exhaust 1-39 on-board diagnosis 21-23 Agglomerate size, soot 291-293 three-way converters 380 Air levels, nitrogen oxide reduction 370 CCSEM see computer controlled scanning electron microscopy Air pollutant emissions 214-215 CFD see computational fluid dynamics see also NO, emission Char oxidation 210, 351-352 Alcohol flames, ionic composition 473-475 Charge transfer, ion formation 489 Alternative fueled engines, catalysis 21 Charge-exchange reactions, ion formation 488-489 Alzeta Pyecore ceramic fiber burners 255, 258 Chemi-ionization Analyzers, Hot Foil Loi 262 flames 437-455 Ash deposition large hydrocarbons 490 fouling model 272 Chemical distributions 144-145 heat flux 279, 280, 281 Chemical kinetics (CHEMKIN) 247, 249 large scale combustion 267-282 CHEMKIN see chemical kinetics modeling 267-282 Clean Air Act Amendments (CAAA) 1990 253-255 literature review 268-273 CO flames, ionic composition 476 predictive indices 268-273 Coal pilot-scale simulations 275-277 see also pulverized coal Ash formation 212-213 ash deposition modeling 267-282 Ash transformation model (ATRAN) 268-270 characterization 350 Atomic spectra 148-149 combustion 350-352 Atomic structure 138-141 devolatilization 209-210, 350-351 Atomisation, spray combustion 41-63 fuel nitrogen e ecton NO, 241 ATRAN see ash transformation model nitrogen oxide formation 368 Automobiles, exhaust aftertreatment 1-39 pyrolysis 286-290 soot in combustion systems 283-301 Back-scattered light, sizing measurements 54-57 utility boiler types 245-246, 248-249 Benzene volatile matter combustion 351 flame composition 467-469 Coalescence soot yields 289 droplets 65-79 Binary water drop collisions 69-75 e ciency 70-72 Block swirler 359-360 Codes, combustion modeling 219-220, 273-274 Boilers Coil spark ignition system 381-382 char oxidation 351-352 Cold starting 391-392 Goudey 277, 278 Collision dynamics, droplets 142-144, 338-340 nitrogen oxide formation 369-371 Composition, planar imaging method 194 simulations 277-281 Comprehensive modeling, development 218-220, 267-282 Bounce, droplets 70 computational fluid dynamics (CFD) 372, 373 Breakdown ignition system, characteristics 386-387 Computer controlled scanning electron microscopy (CCSEM) Broadening see spectral line broadening 268-271, 272 Bulk solid sampling, soot 292-293 Concentration measurement Burmers calibration 188 air staging 370 pump-decay and fast pulse methods 186-188 Alzeta Pyecore ceramic fiber 255, 258 real atoms and molecules 187-188 axial concentration profiles 243, 245 two-level atom 186-187 conventional vs. low NO, 361-362 saturation 188 dual register 243, 245, 252 steady-state/integrated pulse methods 183-186 flame stabilisation 512-515 atoms 183-184 nitrogen oxide 349-377 molecules 184-185 pulverized coal 349-377 uncertainty 188 radian rapid mix 256, 258 Condensed dispersion phase, ionic formation 482-484 recuperative 92-93 Controlled-profile reactor (CPR) 223-224 regenerative 93 Corona spark plugs 386-389 spray counterflow 305-306 Counterflow di usionflames, spray combustion 322-326 vill SUBJECT INDEX Counterflowing streams, droplet behaviours 309-310 mass spectrometric analyser 414—415 CPR see controlled-profile reactor sample flow distortion 416-418 Cyclic ions, formation 486—487 sample inside a sampler cone 420-422 Cylinder pressure, engine running stability 388 sampler/flame interaction 415-416 samplers 412-413 Deposit growth, particles 274-275 typical flames 409, 412 Devolatilization, coal 209-210, 350-351 vacuum pumping track 413-414 Diesel engines, catalytic converters 25-33 mobility 436-437 diodes, PIN 171 rate of ionization 435-436 Disruption, droplets 65-79 rate of recombination 434-435 Doppler broadening 147-148 Flameless oxidation 81-94 Droplets application examples 92-93 behaviours in counterflowing streams 309-310 field measurements 89-92 bounce 70 flame cooling 82-83 collisions mathematical modelling 88 aerodynamic 69-70 NO, emissions 82-84 coalescence e ciency 70-72 process 85-88 dynamics 338-340 Flames 134-136 fluids other than water 75-78 acetic acid 476 impact parameter 72-75 acetylene 457-467 travelling in still air 69-70 alcohol 473-475 water 68-75 benzene 467-469 disruption 65-79 chemi-ionization 437-455 high strain rate 313-317 CO 476 low strain rate 317-322 condensed dispersion phase 482 modeling 310-311 conductivity measurement 403-404 number density 318-320 cooling 82-83 optical velocity measurement 41-63 counterflow di usion322-—326 size density 318-320 droplet number density 319-320 size distribution 41-63 droplet size density 319-320 spray equations 307-309 electric field influence 508-515 trajectories 309-313 electric properties velocity distribution 317-318 applications 518-519 Dual register burners 243, 245, 252 general characteristics 423, 424-437 Duration, engine combustion 384-385 ionic concentrations 425, 433-434 ionic mobility 436-437 EGI see exhaust gas ignition rate of ionization 435-436 EGR see exhaust gas recirculation rate of recombination 434-435 Electric fields ether 476 flame response 508-515 extinction 323-326 soot formation 515-518 flow pattern types 359-361 Electrical ignition systems 381-383 flow reactor 289, 291, 292 Electrons, concentration 425, 433-434 hydrocarbon Emissions acetylene 457-467 see also NO, emissions ionization 437-451 air pollutants 214-215 hydrogen 453-454 control 1-39 ion formation 478-480 legislation 5-7 ionic composition 455-484 NO, limits 253-263 ionic species 399-528 radiation 141-142 ionization detectors 478-480 Engines ionization processes 437-455 see also spark ignition engines ketone 475-476 combustion duration 384-385 Langmuir probe 404-408 emission control 1-39 lean turbulent mixtures 387 high energy ignition systems 379-398 LIF spectroscopy 133-199 lean burn 381 low temperature 448-451 running stability 388 methane 469-470 Entrained flow experiments, soot 285-286 nitrogen containing 454-455, 476-478 Environmental Protection Agency (EPA) 238 oscillations 515 Ether flames, ionic composition 476 oxo-hydrocarbon fuels 472-476 Excitation, fluorescence 150-157, 164-167 propagation 511-512 Exhaust catalytic aftertreatment 1-39 soot 288, 441-448 Exhaust cycle charge, cold starting 391-392 spark ignition engines 237-238 Exhaust gas ignition (EGI) 20 spray Exhaust gas recirculation (EGR), SI engines 379 combustion 326-333 Extinction analysis, flames 323-326 interaction 334-335 stagnation 303-347 Fast Light-o Techniques (FLTs), catalysis 16-21 stabilisation, burners 512-515 Fireside performance test facility (FPTF) 275-277 two-stage combustion 326-333 Flame ions types 360-361 mass spectrometry 408-424 velocity 511-515 electric field influence 418-420 Flow, analytical solutions, spray combustion 308-309 ionic beam formation 413-414 Flow patterns, flame type 359-361 SUBJECT INDEX Flow reactors, flat flame 289, 291, 292 Hydrocarbon flames Flue gas recirculation 370 ionic composition 457-472 Fluorescence 167-172 ionization 437-451 see also Laser induced fluorescence (LIF) spectroscopy saturated 470—472 collection optics 167-168 Hydrocarbons detection 169-172 acetylene 457-467 intensifiers 171-172 chemi-ionization 490 photodiodes 171 oxo-hydrocarbons 472-476 photomultipliers 170-171 polyaromatic 484—495 PIN diodes 171 sooting 441-448 dispersion 168-169 Hydrogen flames, ionization 453-454 excitation dynamics models 150-157 four-level molecule 153-155 IFRF see International Flame Research Foundation three-level atom 152-153 Igniters, SI engines 389-391 transient solutions 155-157 Ignition systems two-level atom 151-152 breakdown characteristics 386-387 measurement 149-150 enhanced 385-395 propagation 168 general comparisons table 395 real molecular behaviour 157-162 high energy 379-398 multiple vibrational level molecule 160-161 homogeneous 391-395 predissociative state 161-162 plasma jet 389-392 steady solutions 158-159 spark discharges 381-383 transient solutions 159-160 Impaction rates, particles 274 two-electronic level molecule 157—158 Incineration, waste 213-216 Forward-scattered light, sizing measurements 49-53 Industry, collaboration 226-228 Fouling Intensifier detectors 171-172 ash deposition model 272 International Flame Research Foundation (IFRF) 239 fuels 211-213 lonic beam formation, mass spectrometry 413-414 waste materials 211-213 lonization FPTF see fireside performance test facility chemi-ionization 437-455 Fuel consumption detectors 478-480 number of spark plugs 384-385 flame processes 437-455 swirl 384-385, 388 hydrogen flames 453-454 Fuel-N reaction pattern 355 nitrogen-derivative-containing flames 454-455 Fuels non-hydrocarbon flames 453-455 concentration e ect370 rate of 435-436 droplet collisions 65-79 solid fuel combustion 484 fouling 211-213 thermoionization 445-448 minerals 211-213 lons nitrogen oxide formation 353-356 see also flame ions reaction chemistry 209 composition in flames 455-484 slagging 211-213 hydrocarbons 457-472 structure 207-211 oxo-hydrocarbons 472-476 Fullerenes saturated hydrocarbons 470-472 charged formation 492 concentration 425, 433-434 flame behaviour 491-492 cyclic 486-487 hydrocarbon formation 492-494 formation ion disappearance 495 charge transfer 489 ion formation 484-495 charge-exchange reactions 488-489 Furnaces flame ionization detectors 478-480 burner air staging 370 flames 455-484 computational fluid dynamics 372-373 fullerenes 484-495 modeling 371-373 polyaromatic hydrocarbons 484-495 reaction engineering models 371-372 mobility in flames 436-437 molecule reactions 426-432, 455-457 Gas absorption losses, LIF spectroscopy 177-178 nitrogen-containing 476-478 Gas turbines, combustion characteristics 225-226 PAH 487-488, 489-490, 494-495, 501-506 Gas-phase nitrogen conversion modeling 355-356 rate of recombination 434-435 Gaussian intensity distribution, sizing measurements 41-63 soot formation 500-508 Goudey power plant 277-281 structure 455-457 Halogens, ion formation 480-482 JDC see jet dispersed combustion Heat flux, ash deposition 279, 280, 281 Jet concepts, homogeneous ignition systems 391-395 Heat transfer Jet dispersed combustion (JDC) 394-395 radiative 216-217 Jet plume injection and combustion (JPIC) 393-394 turbulent reacting flows 216-218 High energy ignition systems, engines 379-398 Ketone flames, ionic composition 475-476 History combustion 203-232 Laminar impinging streams, spray combustion 333-340 NO, control 233-266 Laminar stagnation flows, spray combustion 303-347 Homogeneous ignition systems, combustion jet concepts 391- Langmuir probe 404-408 395 Large scale boilers, ash deposition 267-282 Hot Foil Loi analyzer 262 Laser induced fluorescence (LIF) spectroscopy 133-199 SUBJECT INDEX calibration 173-174 literature review 268-273 data acquisition 172-173 nitrogen oxide formation 352 detectability limits 172 semi-empirical models 102-119 di usionale ects 181 slagging 271, 272 dynamic range 172 soot formation 95-132, 297-298 error sources 175-183 soot optical constants 295-297 excitation subsystem 164-167 soot oxidation 95-132 laser beam steering optics 165-166 turbulent mixing 217 laser sources 164-165 Moisture e ect,nitrogen oxide formation 359 local excitation rate 166-167 Molecular behaviour, fluorescence 157-162 experimental considerations 162-164 Molecular spectra 148-149 gas absorption 178 Molecular structure 138-141 laser heating error 181-182 measurement strategies 183-195 Natural and collisional broadening 146-147 concentration 183-189 Negative ions, concentration 425, 433-434 planar imaging 194 Nitrogen pressure 193 chemical kinetics model 249 temperature 189-192 coal soot 290-29] velocity 193-194 flame ionization 454-455 particles fuel-N reaction pattern 355 absorption 178 ions 476-478 incandescence 180-181 released during combustion 353-354 scattering 178-180 volatile species 354-355 polarization e ects 183 Nitrogen oxide (NO) signal conditioning 172-173 see also NO, signal distortion 181 emissions 81-94 signal gain 182-183 flameless oxidation 81-94 signal interference 178-181 formation 352-359 signal loss 182—183 aerodynamic influence 361-369 spectral fitting 174-175 burners 349-377 thermodynamic background 138-149 coal blends 368 Lasers coal properties influence 355 beams fuel NO 353-356 propagation 166 full scale 369-371 sizing measurements 41—63 moisture e ect359 steering 165-166 particle size 367-368 collecting data 223 primary air 362—365 excitation rates 166-167 pulverized coal 349-377 heating 181-182 residence time 356-357 irradiance 175-177 secondary air 365-367 sources 164—165 slip velocity 367-368 Lean burn engines 33-34, 381 Lean limit extension, NO, emissions 384 stochiometry 356-357 Lean premix combustion 84 swirl number 359-360, 365-367 Lean turbulent mixtures, flames 387 temperature e ect357-359 Legislation, emission control 5—7 tertiary air 366-367 LIF see laser induced fluorescence (LIF) spectroscopy thermal NO 81-94, 352 Line shape method Non-hydrocarbons, flame ionization 453-455 pressure measurement 193 NO, control temperature measurement 192 1970s 238-247, 369 1980s 247-253 Macromolecules, soot formation 503-504 1990s 253-263 Mass spectrometry, flame ions 408-424 future 263 Methane flames, ionic composition 469-470 history 233-266 Methanol dual fuel combustion, emissions 253, 256 implementation 233-266 Methanol spray, two-stage flames 327-333 national emission limits 253-263 Micrographs, soot 292 pre 1970 234-238 Microparticles, soot formation 503—504 reburning 241-242, 255 Minerals NO, emissions 82-84, 91-92 fuels 211-213 boilers 369 waste materials 211-213 coal 215-216, 245-246 Modeling lean limit extension 384 ash deposition 267-282 methanol co-firing 253, 256 combustion national limits 253-263 code 219-220, 273-274 reduction measures 369 evaluation data 220-226 utility boilers 245-246 deposition of particles 274-275 detailed chemistry 119-129 On-board diagnosis (OBD), catalysis 21-23 droplet trajectories 310-311 Optical measurement empirical correlations 99-102 droplets 41-63 fouling 272 soot 291-292 furnaces 371-373 Oxidation gas-phase nitrogen conversion 355-356 flameless 81-94 SUBJECT INDEX slow 448-451 Scanning excitation temperature, LIF spectroscopy 190 soot 95-132 Scattering, LIF error 178-180 Oxo-hydrocarbon flames, ionic composition 472-476 SCR see selective catalytic reduction Secondary air, nitrogen oxide formation 365—367 Particle size, nitrogen oxide formation 367-368, 370 Selective catalytic reduction (SCR) system 246-247, 250, 252, Particles 260-261 absorption losses 178 Selective non-catalytic reduction (SNCR) system 246, 257—260 deposit growth model 274—275 Side-scattered light, sizing measurements 57-61 impaction rates model 274 Sizing measurements incandescence 180-181 back-scattered light 54—57 scattering 179-180 forward-scattered light 49-53 soot size 291-293 Gaussian intensity distribution 41-63 sticking model 274—275 laser beams 41-63 Particulate filters, diesel engines 17—33 side-scattered light 57-61 Perfect gas law 189-190, 193 Slagging Phase Doppler velocimetry 41-63 fuels 211-213 Photodiodes 171 models 271, 272, 281 Photometric units 137 waste materials 211-213 Photomultipliers 170-171 Slip velocity, nitrogen oxide formation 367-368 Pilot-scale burners, investigations 363 SNCR see selective non-catalytic reduction Pilot-scale simulations, ash deposition 275-277 Solid fuel combustion 484 PIC see pulse jet combustor Soot Planar imaging, LIF spectroscopy 194-195 agglomerate size 291-293 Plasma jet ignition 389-392 bulk solid sampling 292-293 Polarization e ects,LIF spectroscopy 183 butadiene yields 289 Pollutants see emissions coal combustion systems 283-301 Polyaromatic hydrocarbon (PAH) ions 484—495 coal pyrolysis data 286-290 disappearance 495 electric field influence 515-518 formation route 501-503, 504-506 entrained flow experiments 285-286 fuel-lean flame 494—495 Ex situ measurements 294 growth 487-488 experiments performed 284—286 vaporization 489-490 flames 288, 441-448 Polycylic aromatic compounds 287 fluidized bed data 286 Positive ions, concentration 425, 433-434 formation 95—132, 288 Pressure electric field influence 515-518 broadening 146-147 flames 288 engine cylinder 388 ions 500-508 measurement 193 modeling 297-298 narrowing .148 history 496-500 spark/rail plug histories 391 hydrocarbon flames 441-448 Primary air, nitrogen oxide formation 362-365 In situ measurements 294-295 Pulse jet combustor (PJC) 393, 394 ion formation 500-508 Pulverized coal models 99-129 ash deposition modeling 267-282 detailed chemistry 119-129 burners 349-377 empirical correlations 99-102 nitrogen oxide formation 349-377 formation 297-298 Pyrolysis optical constants 295-297 coal 286-290 semi-empirical models 102-119 soot 284-285 nitrogen content 290-291 optical experiments 291-292 Quantum state distributions 144-145 optical properties 293-297 origination zone 443-445 Radian rapid mix burner 256, 258 oxidation 95—132, 297-298 Radiation, absorption/emission 141-142 particle size 291-293 Radiative transfer 145-146, 216-217 pyrolysis 284-285 Radiometric units 137 sampling 292-293 Rail plugs TEM micrograph 292 igniters 389-39] thermoionization 445-448, 489 pressure histories 39] Spark discharges, ignition systems 381-383 Raman scattering 179 Spark ignition engines Rate of ionization 435-436 see also standard spark ignition systems; supplementary Rate of recombination 434-435 secondary energy ignition Rayleigh scattering 179 catalytic converters 7—25 Reaction engineering, furnaces models 371-372 flame propagation 237—238 Reaction mechanisms, fuel structure 207-211 high energy systems 379-398 Reactions, ion-molecule 426-432, 455-457 operation 380-381 Reburning 84-85 Spark ignition system, coil 381-382 NO, control 241-242, 255 Spark plugs Recombination rate 434—435 corona 386-389 Recuperative burners 92-93 fuel consumption 384—385 Regenerative burners 93 pressure histories 391 Spectral fitting, LIF spectroscopy 174-175 Saturated hydrocarbon flames 470-472 Spectral interference, LIF spectroscopy 178 SUBJECT INDEX Spectral line broadening 146-148 thermally assisted temperature 191-192 combined Doppler and collisional broadening 148 two-line temperature 190-191 Doppler broadening 147-148 Tertiary air, nitrogen oxide formation 366-367 natural and collisional broadening 146-147 Thermal nitrogen oxide 81—94, 352 pressure broadening 146-147 Thermoionization, soot flames 445-448 pressure narrowing 148 Thermophoretic sampling, soot 291, 292 Spectroscopy see laser induced fluorescence (LIF) spectroscopy Three way catalytic converter (3WCC) Spray combustion 41-63 mathematical modeling 23-24 counterflow burner 305-306 operational phenomena 8-10 counterflow di usionflames 322-326 Three-way catalytic converter (3WCC) 380 diagnostics 305-307 Trajectory modeling, droplets 310-311 droplet equations 307-309 Transient solutions 159-160 droplet trajectories 309-313 Tubes, flame propagation 511-512 equations 307-309, 320-322 Turbulence experiments 305-307 flame mixtures 387 flame interaction 334-335 mixing model 217 flow analytical solutions 308-309 reacting flows 216-218 laminar stagnation flows 303-347 two-phase 217 impinging streams 333-340 Two-line temperature, LIF spectroscopy 190-191 methanol 327-333 Two-stage combustion stagnation flames 303-347 flames 326-333 strain rates 313-322 methanol spray 327-333 structures 313-322, 335-338 theoretical analysis 307—309 Units two-stage flame 326-333 photometric 137 Spray stagnation flames 303-347 radiometric 137 see also spray combustion Utility boilers 277-281 SS see standard spark ignition systems see also boilers SSE see supplementary secondary energy ignition Standard spark (SS) ignition systems Vacuum pumping track, mass spectrometry 413-414 see also spark ignition system; supplementary secondary Vaporization energy ignition flow analytical solutions 308-309 combustion characteristics 390 PAH ions 489-490 discharge characteristics 383-384 Velocity measurement, LIF spectroscopy 193-194 Steady solutions 158-159 Voigt profile 148 Sticking model, particles 274-275 Volatile matter, coal combustion 351 Stoichiometry, nitrogen oxide formation 356-357 Supplementary secondary energy (SSE) ignition 383-384 Waste Swirl fouling 211-213 combustion duration 384-385 incineration 213-216 fuel consumption 384-385, 388 minerals 211-213 nitrogen oxide formation 359-360, 365-367 slagging 211-213 thermal treatment 215 Temperature measurement 189-192 Water droplet collisions 68-75 line shape temperature 192 aerodynamic 69-70 perfect gas law temperature 189-190 coalescence e ciency 70-72 planar imaging 194-195 impact parameter 72-75 scanning excitation temperature 190 3WCC see three way catalytic converter Printed and bound in Great Britain by BPC Wheatons Ltd, Exeter