ebook img

Progress in Biophysics and Molecular Biology 1998: Vol 69 Index PDF

5 Pages·1998·1 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Progress in Biophysics and Molecular Biology 1998: Vol 69 Index

AUTHOR INDEX TO VOLUME 69 Anthony C., | Jafri S., 497 Omens J. H., 559 Arts T., 273 Jin J.-P., 425 Johnson C. R., 405 Prinzen F. W., 273 Bassingthwaighte J. B., 153, 445 Kalhan S. C., 539 Qian H., 445 Karplus W., 225 Cabrera M. E., 539 ter Keurs H. E. D. J., 289, 425 Reneman R. S., 273 Ch’en F. F.-T., 515 Kogan B., 225 Rice J., 497 Chudin E., 225 Kurzynski M., 23 Saidel G. M., 539 Clarke K., 515 Constable T., 333 Li Z., 445 ang 333 Skouibi .» 387 Davis B. K., 83 MacLeod R. S., 405 ones oat Delhaas T., 273 May-Newman K., 463 Duncan J., 333 McCulloch A. D., 153, 157, 289, 463 Taber L. A., 237 Mehra R., 353 Trayanova N., 387 : Min X., 353 eter a; 425 Miura M., 425 Vaughan-Jones R. D., 515 i: Moore P., 387 Vetter F. J., 157 Muzikant A. L., 205 Henriquez C. S., 205 Weiss J., 225 Huber G. A., 483 Nelson T. R., 257 Winfree A. T., 185 Hunter P. J., 153, 289 Noble D., 153, 515 Winslow R. L., 497 SUBJECT INDEX TO VOLUME 69 Acetylcholine receptors, disulphide ring 8 excitation-contraction coupling 450, 457 Acidosis, cardiac tissue, model 527-530 gas exchange, model 350-551 Alcohol dehydrogenase, PQQ-containing 14-15 oxidative phosphorylation 453-455 Arrhythmia, global mechanisms 206-208 oxygen consumption 452-453 Autocatalysis 127-134 Cardiac muscle dynamic stiffness 312-313 Bacteria mechanics dehydrogenases fading memory model 303-305 methanol 3—14 finite duration length steps 307-309 PQQ |-3 force-velocity curve 305—307 quinohaemoprotein alcohol 14 models of 289-331 Bioenergetics shortening deactivation 315-316 cardiac 318-319, 445, 450, 455-456 tension-velocity relations 310-312 modeling 544-545 Cardiac myocytes chemical kinetic relations 548-549 troponin C 292-295 control coefficients 549-550 crossbridge kinetics 302-303, 310 dynamic mass balances 547-548 myofilament length dependence 299-302 tissue-specific 546-547 thin filament kinetics 296-298, 310 tropomyosin kinetics 298-299 Ca? * -induced Ca’ * -release (CICR) mechanism 227-229 Cardiac rhythm 154 Ca-ATPase pump, down-regulation model 503, 506-507 see also Arrhythmia Calcium, sensitising drugs, cardiac 320-321 Cardiac tissue Calcium dynamics, wave propagation 225-236 acidosis, model 527-530 Cardiac, see also Coronary volume overload hypertrophy 565-570 Cardiac action potential, 3-D electrophysiology 162-163 wave propagation 225-236 Cardiac anatomy, fetal, 3-D echocardiography 257-272 spiral wave 207, 225, 232-235 Cardiac architecture, mechanical regulation of 563-565 see also Myocardium Cardiac cells Cardiac volume calcium dynamics, computer simulation 225, 236 fetal electrical activation data acquisition 259-263 3-D model 205-223 quantitative measurements 263-264 modeling 163-165 Cardiome Project 154, 445, 448-457, 539-540 membrane ion channels 318 CHD see Coronary heart disease models, Oxsoft[c] HEART 174, 515 CHF see Congestive heart failure see also Myocytes Chick heart cell, development 237-255 Cardiac development CICR see Ca? * -induced Ca? * -release cardiac tube 238-239, 243-245 Citric acid cycle, evolution 128 looping 239-240, 245-247 Comomonas testosteroni, quinohaemoprotein ethanol septation 242, 250-252 dehydrogenase 15 trabeculation 241-242, 247-250 Competitive replication valve formation 242, 252 fitness 101-105, 114, 144 Cardiac drugs, calcium sensitising 320-321 at non-linear propagation rates 86—100 Cardiac fibers Computational physiology 154 geometry 242, 253 Congestive heart failure (CHF), excitation-contraction orientation 212-213 coupling,.model 497-514 stress, calculation 276-280 Conus, specialised conduction 208-209 stress-strain diagrams 273, 275-276 Coronary, see also Cardiac Cardiac function Coronary artery mechanics, modeling 161-162, 165-171 anatomy 450 normal 445 occlusion, regional work 273 rabbit ventricular anatomy 157-183 Coronary flow 445, 451-453 stretch-activated ion channels (SACs) 172-174 Coronary heart disease (CHD) 515-516 Cardiac mapping, 3-D conduction models 205-223 Cytochrome cd;, propeller structure 5, 6 Cardiac metabolism Cytochrome c,, methanol dehydrogenase 13-14 bioenergetics 318-319, 445, 450, 455-456 model 521-527, 546 Defibrillation calcium 445, 457 electrode effects 387-403 Subject Index to Volume 69 line electrodes 395—397 Hydrodynamic forces 490-492 membrane kinetics 391—392 point-source electrodes 397-398 lon channels tissue stimulation 39] cardiac cells 318 see also Fibrillation stretch-activated 172—174 Defibrillation thresholds (DFTs) Ischaemia, model 515—538 calculation of 359-360 electrode systems 353-355 Left ventricle Can 379-382 deformation lead configurations 353, 360-369 continuum mechanics 339-348 right ventricle 370-373, 373-374 finite element method 340-343 superior vena cava 375-376, 377 function, modeling 333-351 finite element analysis 355—358 regional work 273-287 myocardial volume 359 strain 3DFE see Three-dimensional fetal echocardiography 3-D segmentation 337-338 DFTs see Defibrillation thresholds computer vision 338—339 DNA imaging 334-335 replication magnetic resonance tagging 335-337 competitive 85 phase contrast MRI 338 kinetics 111—113 stress-strain ischemic 282-284 normoxic 280—282 ECC see Excitation-contraction coupling ECG see Electrocardiogram Metabolic regulation 540-541 Electrocardiogram (ECG) measurement 551-552 adaptive meshing 415-415 modeling 541-545 inverse problem 405, 407-409, 419-420 moderate exercise 553-555 local regularisation methods 405-423, 411-414, 416-419 respiratory hypoxia 552-553 adaptive methods 409-41 | Methanol dehydrogenase finite element approximation 408-409 active site 9-11 Electrostatic forces 484-488 8 subunit 7-8 Enzymes, mechanisms, protein machine 66—74 disulphide ring 8-9 Evolution mechanism 11-13 autocatalysis 127—134 superbarrel structure 3—5 competition, mimisation of 137—138 tryptophan-docking interactions 5—7 complexity 125—127 Methylamine dehydrogenase 6 molecular Methylobacterium extorquens 3 coexistence 99-100, 108-111, 117 Monte Carlo simulations 24 dual-force model 84-85 Morphome 446 force damping 119-123, 143 Myocardium force equilibrium 108-111, 143 ATP metabolism, model 521—524 kinetic force 90-93 defibrillation, spiral wave re-entry 394-395 maximum principle 89-90 electrical currents 451 path of least kinetic action 93-97 flow distribution 451-453 path of least thermodynamic action 97—99, 117 glycogen metabolism, model 524 natural selection, species formation 138-142 growth regulation 559-572 prebiotic 118 intracellular calcium 292-295 resource capture 134-137 ischaemia, model 515-538 Excitation-contraction coupling 172 lactate transport, model 524-526 heart failure model 497-514 myofilament activation 319-320 Excitation-contraction coupling (ECC) 450, 457 myosin isoforms 320 congestive heart failure 497-514 passive elasticity 291-292, 309 pH regulation, model 517-521 reperfusion, model 515, 531-533 Fibrillation, mechanism of 225 transmembrane potential, shock-induced change 398-400 Fractal lattices volume, defibrillation thresholds (DFTs) 359 gate 51-56 wall stress 160 random walk 47 wavefronts, rotational anisotropy 207 spectral dimension 48-51 see also Cardiac tissue Myocytes Galactose oxidase 6 architecture 159-160 Gas exchange, cardiac, model 550-551 calcium handling 499-500 Genome Project 446 excitation-contraction coupling, heart failure model 497— Glucose dehydrogenase, PQQ-containing 1, 15-18 514 Subject Index to Volume 69 force generation 500—S01 Proteome 447 glucose delivery systems 452 Pseudomonas aeruginosa, PQQ-containing alcohol growth, mechanical regulation of 560-563 dehydrogenases 14 hemodynamic loading responses 559-572 Pyrrolo-quinoline quinone (PQQ) 1-3 mathematical model, calcium dynamics 226-235 receptors 319-320 Quinohaemoprotein alcohol dehydrogenase 14 see also Cardiac cells Quinohaemoprotein ethanol dehydrogenase 15 Myosin, isoforms 320 Quinoprotein dehydrogenases 1-21 Na/Ca exchanger 227 myocardial ischaemia 534 Rabbits, ventricular anatomy 165-171 Reaction mechanisms up-regulation model 503-506, 508-511 Natural selection, molecular evolution 138-142 fluctuating barrier 25, 40-43 gating 25, 43 Nitrite reductase, propeller structure 5, 6 Reaction rates Object-oriented programming, molecular dynamics 493-494 intramolecular dynamics 2, 3, 43 Oxidative phosphorylation, cardiac metabolism 453-455 stochastic modeling 33-43 Replication pH competitive acidosis, cardiac tissue 527-530 fitness 101-105, 114, 144 cardiac tissue at non-linear propagation rates 86-100 lactate transport 524-526 driving forces 105—108 measurement 518 RNA metabolism 526-527 driven strand separation 123-124 intracellular evolution 133-134 buffers 519 replication proton fluxes 519-520 competitive 75 sarcolemmal transporters 519-520, 525 de novo synthesis 116 Physiome Project 154, 445-448, 539 driving forces 105-108 PQQ see Pyrrolo-quinoline quinone force damping response 119-123 Prebiotic evolution 118 Protein conformation 25-26 SACs see Stretch-activated ion channels Protein dynamics Sarcolemmal transporters, intracellular pH 519-520, 525 fractal lattices 46-56 Species formation, molecular evolution 138-142 modelling Stretch-activated ion channels (SACs) 172-174 longest relaxation time 33-37 Surface forces 489-490 reaction rate 37-40 spin glass theory 46-47 Three-dimensional fetal echocardiography (3DFE) 257-272 vibrations 27-28 TnC see Troponin C Protein folding 28 Troponin C (TnC) 290, 319 Protein glass 23, 24, 43-46, 74 binding kinetics 295-296 Protein machine 23, 24, 56-74 binding sites 292-295 Protein structure contraction, effect of intracellular pH 520-521 conformational states 31 relaxation time 33—37 Ventricle tertiary 28 tryptophan-docking interactions 5—7 geometry 158, 170 myofiber architecture 159-160 Proteins conformational states 25-32 pace-mapping 209-211 experimental data 211-220 continuum models 483 electrostatic forces 484-488 structure, model 165-172 wall stress 160 enzyme reactions, statistical theory 66-74 essential dynamics analysis 493 see also Left ventricle Ventricular fibrillation see Fibrillation hydrodynamic forces 490-492 intramolecular dynamics 23-82 molecular dynamics, object-oriented programming 493-— Water 494 electrostatic forces 484-488 spin-glass models 46—47 hydrodynamic forces 490-492 surface forces 489-490 surface forces 489-490

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.