ebook img

Profinite graphs and groups PDF

473 Pages·2017·4.508 MB·English
by  RibesLuis
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Profinite graphs and groups

Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge A Series of Modern Surveys in Mathematics 66 Luis Ribes Profi nite Graphs and Groups Ergebnisse der Mathematik und Volume 66 ihrer Grenzgebiete 3.Folge A Series of Modern Surveys in Mathematics EditorialBoard L.Ambrosio,Pisa V.Baladi,Paris G.-M.Greuel,Kaiserslautern M.Gromov,Bures-sur-Yvette G.Huisken,Tübingen J.Jost,Leipzig J.Kollár,Princeton G.Laumon,Orsay U.Tillmann,Oxford J.Tits,Paris D.B.Zagier,Bonn Forfurthervolumes: www.springer.com/series/728 Luis Ribes Profinite Graphs and Groups LuisRibes SchoolofMathematicsandStatistics CarletonUniversity Ottawa,ON,Canada ISSN0071-1136 ISSN2197-5655(electronic) ErgebnissederMathematikundihrerGrenzgebiete.3.Folge/ASeriesofModernSurveys inMathematics ISBN978-3-319-61041-2 ISBN978-3-319-61199-0(eBook) DOI10.1007/978-3-319-61199-0 LibraryofCongressControlNumber:2017952053 MathematicsSubjectClassification: 20E18,20E06,20E08,20F65,20J05,05C05,20M35,22C05 ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Para Fabián Para LuisitoyTomasín Preface Profinite groups are Galois groups, which we view as topological groups. In this book the theory of profinite graphs is developed as a natural tool in the study of someaspectsofprofiniteandabstractgroups.Ourapproachismodelledontheby now classical Bass–Serre theory of abstract groups acting on abstract trees as it appearsinJ.-P.Serre’smonograph‘Trees’. WethinkofagraphΓ astheunionofitssetsofverticesV andedgesE.Agraph Γ isprofiniteifitisendowedwithaprofinitetopology(i.e.,acompact,Hausdorff and totally disconnected topology), in such a way that the functions defining the originandterminalpointsarecontinuous.Anaturalexampleofaprofinitegraphis theCayleygraphΓ(G,X)ofaprofinitegroupGwithrespecttoaclosedsubsetX, sayfinite,ofG:theverticesofΓ aretheelementsofG,anditsdirectededgeshave theform(g,x)(g∈G,x∈X)withorigind (g,x)=gandterminald (g,x)=gx. 0 1 ThenthetopologyofGnaturallyinducesaprofinitetopologyonΓ(G,X). Part I of this book contains an exposition of the theory of profinite graphs and howitrelatestoandismotivatedbythetheoryofprofinitegroups.PartIIdealswith applications to profinite groups, while Part III is dedicated to the study of certain propertiesofabstractgroupswiththehelpoftoolsdevelopedinPartsIandII. Our aim in Parts I and II has been to make the exposition self-contained, and familiarity with the theory of abstract graphs and groups is not strictly necessary. However,knowledgeoftheBass–Serretheorycertainlyhelps,andthroughoutthese twopartsweoftenindicatetheinterconnections.Theseconnectionsareinfactthe maintoolsforsomeoftheapplicationstoabstractgroupsinPartIII,whereresults andideasrangingfromtopologyandabstractgrouptheorytoautomatatheoryare usedfreely. Onefundamentaldifferencewiththeabstractcaseisthataprofinitegroupacting freelyonaprofinitetreeneednotbeafreeprofinitegroup(itisjustprojective).This leadstoastudyofGaloiscoveringsofprofinitegraphsandfundamentalgroupsof profinitegraphs.Throughoutthebookwehavetriedtobeasgeneralasreasonably possible,andsoweconsiderpro-Cgroups,whereCisaclassoffinitegroups,rather thanprofinitegroupsingeneral.ConsequentlythebookincludesstudiesofGalois C-coverings,C-trees,fundamentalgroupsofgraphsofpro-C groups,etc. vii viii Preface Part I (Chaps. 2–6) includes the development of free products of pro-C groups continuously indexed by a topological profinite space, and a full treatment of the fundamentalpro-C groupofagraphofpro-C groups. PartII(Chaps.7–10)containsapplicationstothestructureofprofinitegroups.In Chap.7wedescribesubgroupsoffundamentalgroupsofgraphsofprofinitegroups; in particular, an analogue of the Kurosh subgroup theorem for open subgroups of free products of pro-C groups is established. Chapter 8 describes the properties of minimalG-invariantsubtreesofatreeonwhichthegroup G acts;thisisdonefor profinite as well as abstract groups and graphs. The study of such minimal trees wasinitiatedbyTitswhen G iscyclicandactswithoutfixedpointsonanabstract tree.Itturnsoutthattheconnectionsbetweenthesetypesofminimalsubtreesinthe abstract and profinite cases provides a powerful tool to study certain properties in abstractgroups.Chapters9and10ofPartIIdealmainlywithhomology.Chapter9 includes a theorem of Neukirch and a generalization of Mel’nikov characterizing homologically when a profinite group is the free product of a collection of sub- groupscontinuouslyindexedbyatopological(profinite)space;thisplaystheroleof theusualcombinatorialdescriptionoffreeproductsinthecaseofabstractgroups. This chapter also contains a Kurosh-like theorem for countably generated closed subgroupsoffreeproductsofpro-p groupsduetoD.HaranandO.Mel’nikovin- dependently.Chapter10includesthewell-knowntheoremofJ.-P.Serrethatasserts that a torsion-free pro-p group G with an open free pro-p subgroup must be free pro-p.ThereisalsoageneralizationofthisresultduetoC.Scheiderer,whereone allowstorsioninG.Usingthis,thechapteralsocontainsastudyofthesubgroupof fixedpointsofanautomorphismofafreepro-pgroup. Part III (Chaps. 11–15) contains applications to abstract groups. These include generalizations of a theorem of Marshall Hall that asserts that a finitely generated subgroup H of an abstract free group Φ is the intersection of the subgroups of fi- nite index in Φ that contain H; an algorithm to compute the closure of a finitely generatedsubgroupH ofanabstractfreegroupΦ inthepro-ptopologyofΦ;and applications to the theory of formal languages and finite monoids. Also included isthestudyofcertainpropertiesthatholdforanabstractgroupifandonlyifthey hold for the finite quotients of that group, e.g., conjugacy separability for an ab- stractgroup R:for x,y∈R,theseelementsareconjugatein R iftheirimagesare conjugateineveryfinitequotientgroupofR. The book ranges over a large number of areas and results, but we have not in- tendedtomakethisintoanencyclopediaofthesubject.PartIgivesafairlycomplete accountofprofinitegraphsandtheirconnectionwithprofinitegroups.Howeverin PartIIand,evenmore,inPartIII,Ihavemadeachoiceoftopicstoillustratesome results and methods. At the end of each of the three parts of the book there is a sectionwithhistoricalcommentsonthedevelopmentofthefundamentalideasand theorems, statements of additional results, references to related topics, and open questions. Inanefforttomakethebookself-contained,thefirstchapterincludesareview of basicnotionsand results aboutprofinitespaces,profinitegroups andhomology thatareusedfrequentlythroughoutthemonograph.AppendixAdealswithaspects Preface ix ofabstractgraphsthatareofinterestinthebook.Themainpurposehasbeentode- velopaterminologycommontoabstractandprofinitegraphs.AppendixBcontains aproofofatheoremofM.Benoisaboutrationallanguagesinfreeabstractgroups. I have been indebted to many colleagues during the writing of this book. ThroughouttheyearsIhavehadmanymathematicaldiscussionswithmylongtime collaboratorPavelZalesskiithathavehelpedtoclarifysometopicsdevelopedhere; it is a pleasure to acknowledge with thanks my debt to him. I thank John Dixon, Wolfgang Herfort, Dan Segal and Benjaming Steinberg, who have read parts of themanuscriptandhavemadeveryusefulcomments,correctionsandsuggestions. Jean-EricPinhasprovidedhelpfulreferences,andIamverygratefultohimforthis. This book was written mainly in Ottawa and Madrid. In Ottawa my thanks go to Carleton University for continuous help throughout the years, and for sabbat- ical periods that have allowed me to concentrate on the writing of his book. In Madrid I have often used the facilities of the Universidad Complutense, the Uni- versidad Autónoma and ICMAT, and I thank all of them for their generosity, and my colleagues at these institutions for their welcome whenever I have spent time withthem.Finally,Iacknowledgewiththanksthecontinuedresearchsupportfrom NSERC. Madrid–Ottawa LuisRibes March,2017 Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 InverseLimits . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 ProfiniteSpaces . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 ProfiniteGroups . . . . . . . . . . . . . . . . . . . . . . . . . 4 PseudovarietiesC . . . . . . . . . . . . . . . . . . . . . . . . . 5 Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 G-SpacesandContinuousSections . . . . . . . . . . . . . . . 6 OrderofaProfiniteGroupandSylowSubgroups . . . . . . . . 7 1.4 Pro-C TopologiesinAbstractGroups . . . . . . . . . . . . . . 8 1.5 FreeGroups . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.6 FreeandAmalgamatedProductsofGroups . . . . . . . . . . . 10 1.7 ProfiniteRingsandModules . . . . . . . . . . . . . . . . . . . 11 ExactSequences . . . . . . . . . . . . . . . . . . . . . . . . . 13 TheFunctorsHom(−,−) . . . . . . . . . . . . . . . . . . . . 13 ProjectiveandInjectiveModules. . . . . . . . . . . . . . . . . 14 1.8 TheCompleteGroupAlgebra . . . . . . . . . . . . . . . . . . 15 G-Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 CompleteTensorProducts . . . . . . . . . . . . . . . . . . . . 16 1.9 TheFunctorsExtn(−,−)andTorΛ(−,−) . . . . . . . . . . . 17 Λ n TheFunctorsExtn(−,−) . . . . . . . . . . . . . . . . . . . . 17 Λ TheFunctorsTorΛ(−,−) . . . . . . . . . . . . . . . . . . . . 19 n 1.10 HomologyandCohomologyofProfiniteGroups . . . . . . . . 20 CohomologyofProfiniteGroups. . . . . . . . . . . . . . . . . 20 SpecialMapsinCohomology . . . . . . . . . . . . . . . . . . 23 HomologyofProfiniteGroups . . . . . . . . . . . . . . . . . . 24 DualityHomology-Cohomology . . . . . . . . . . . . . . . . . 24 (Co)inducedModulesandShapiro’sLemma . . . . . . . . . . 25 1.11 (Co)homologicalDimension . . . . . . . . . . . . . . . . . . . 25 xi xii Contents PartI BasicTheory 2 ProfiniteGraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.1 FirstNotionsandExamples . . . . . . . . . . . . . . . . . . . 29 2.2 GroupsActingonProfiniteGraphs . . . . . . . . . . . . . . . 41 2.3 TheChainComplexofaGraph . . . . . . . . . . . . . . . . . 45 2.4 π-TreesandC-Trees . . . . . . . . . . . . . . . . . . . . . . . 48 2.5 CayleyGraphsandC-Trees . . . . . . . . . . . . . . . . . . . 57 3 TheFundamentalGroupofaProfiniteGraph . . . . . . . . . . . . 63 3.1 GaloisCoverings . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.2 G(Γ|(cid:6))asaSubgroupofAut(Γ) . . . . . . . . . . . . . . . . 72 3.3 UniversalGaloisCoveringsandFundamentalGroups. . . . . . 74 3.4 0-Transversalsand0-Sections . . . . . . . . . . . . . . . . . . 77 3.5 ExistenceofUniversalCoverings . . . . . . . . . . . . . . . . 82 3.6 SubgroupsofFundamentalGroupsofGraphs . . . . . . . . . . 89 3.7 UniversalCoveringsandSimpleConnectivity . . . . . . . . . . 91 3.8 FundamentalGroupsandProjectiveGroups . . . . . . . . . . . 95 3.9 FundamentalGroupsofQuotientGraphs . . . . . . . . . . . . 96 3.10 π-TreesandSimpleConnectivity . . . . . . . . . . . . . . . . 100 3.11 FreePro-C GroupsandCayleyGraphs. . . . . . . . . . . . . . 105 3.12 ChangeofPseudovariety . . . . . . . . . . . . . . . . . . . . . 107 4 ProfiniteGroupsActingonC-Trees . . . . . . . . . . . . . . . . . . 111 4.1 FixedPoints . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.2 FaithfulandIrreducibleActions . . . . . . . . . . . . . . . . . 119 5 FreeProductsofPro-C Groups . . . . . . . . . . . . . . . . . . . . 137 5.1 FreePro-C Products:TheExternalViewpoint . . . . . . . . . . 137 5.2 SubgroupsContinuouslyIndexedbyaSpace . . . . . . . . . . 145 5.3 FreePro-C Products:TheInternalViewpoint . . . . . . . . . . 148 5.4 ProfiniteG-SpacesvstheWeightw(G)ofG . . . . . . . . . . 153 5.5 BasicPropertiesofFreePro-C Products . . . . . . . . . . . . . 157 5.6 FreeProductsandChangeofPseudovariety . . . . . . . . . . . 164 5.7 ConstantandPseudoconstantSheaves . . . . . . . . . . . . . . 167 6 GraphsofPro-C Groups . . . . . . . . . . . . . . . . . . . . . . . . 177 6.1 GraphsofPro-C GroupsandSpecializations . . . . . . . . . . 177 6.2 TheFundamentalGroupofaGraphofPro-C Groups . . . . . . 180 UniquenessoftheFundamentalGroup . . . . . . . . . . . . . 185 6.3 TheStandardGraphofaGraphofPro-C Groups . . . . . . . . 193 6.4 InjectiveGraphsofPro-C Groups . . . . . . . . . . . . . . . . 205 6.5 AbstractvsProfiniteGraphsofGroups . . . . . . . . . . . . . 207 6.6 ActionofaPro-C GrouponaProfiniteGraphwithFinite Quotient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 6.7 Notes,CommentsandFurtherReading:PartI . . . . . . . . . . 216 AbstractGraphofFiniteGroups(G,Γ)overanInfiniteGraphΓ 218

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.