ebook img

Professor Higgins's Problem Collection PDF

135 Pages·2017·2.936 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Professor Higgins's Problem Collection

PROFESSORHIGGINS’SPROBLEMCOLLECTION Professor Higgins’s Problem Collection PETER M. HIGGINS 3 3 GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries ©PeterM.Higgins2017 Themoralrightsoftheauthorhavebeenasserted FirstEditionpublishedin2017 Impression:1 Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica BritishLibraryCataloguinginPublicationData Dataavailable LibraryofCongressControlNumber:2016957995 ISBN978–0–19–875547–0 Printedandboundby CPILitho(UK)Ltd,Croydon,CR04YY LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork. PREFACE Mathematicsisawonderfulsubjectbecauseitscontentissorich,diverse,anddeepbutwhat ismore,everythinginitistrue.Thatiswhystudentsenjoyapplyingwhattheyhavelearntto awidevarietyofquestions.Thefiftyproblemsherearepresentedunderfivebroadheadings: Number, Algebra, Geometry, Chance and combinations, and Movement. These wide fields covermostofthemathematicsmetatsecondaryschoollevel.Althoughtheemphasisison themathematicsitself,solvingtheproblemsallowsustocomprehendmanyinterestingfacets oftheworldfromencryption,tothemotionoftheplanets,tounderstandingwhyrecessive genetraitsneverdieout.Manyoftheprocessesweseegoingonaroundushaveunderlying mathematicalstructuresandsocannotbefullyunderstoodotherthanthroughmathematical analysis. Theproblemsaregenerallynotstandardexercisesbuthavesomedegreeofnoveltyorspe- cialinterestthatgoeswiththem.Theprimarypurposeistoallowyoutodosomethingwith yourmathematicsratherthanmerelypractiseit.Withineachpart,thereissomegradationin difficultyoftheproblems.Iwouldhopethatanyreadercouldlookatsomeoftheproblems andthinktothemselvesthattheycouldfigurethemoutsomehow. Thisbookdrawsfromawidescopeofmathematicalnotionsandforthatreasoneachpart beginswithashortsummaryofthekindsofquestionsthatyouareabouttoseewhilemore detailontherelevantmathematicalideasandnotationsinvolvedistobefoundattheclose ofeachpart.Theseremindersdonotconstituteacompletesummaryofthesubjectstouched upon,noraretheresultsstatedalwaysthemostgeneralpossible,buttheydocovertheideas thatcropupinthecourseofsolvingourproblems.Inthiswaythereadercanfind,withinthe bookitself,whatheorsheneedsforacompleteunderstandingofthesolutions. Asyouwillread,theformatconsistsofposingaquestion,orsometimesapairofrelated questions,thefullsolutiontowhichisrevealedbysimplyturningthepage.Atthecloseof eachpartthereisaconcludingsectionthatfillsinsomeofthebackgroundtotheproblems andoffersglimpsesastowheretheaccompanyingtrainsofthoughtlead.Thereismuchto discoverasyoureadthroughthebookandIhopethatyouwillenjoyitall. PeterM.Higgins UniversityofEssex ColchesterUK 2017 CONTENTS 1 Number 1 Introduction 1 Problem1:Whatvaluesmayprimestake? 3 Problem2:Hiddenbinary 5 Problem3:Howshouldwewritefractions? 7 Problem4:Labellingacube 9 Problem5:Mapnumberingproblem 11 Problem6:Countingthepennies 13 Problem7:Countingsolutions 15 Problem8:Crackingcodes 17 Problem9:Logicpuzzles 19 Problem10:Pigeonholetricks 21 Numbernotes 23 Commentsonnumberproblems 25 2 Algebra 27 Introduction 27 Problem11:Tradingequations 29 Problem12:Frogandtoad 31 Problem13:Geometricseriesquestions 33 Problem14:Summingpowersofintegers 35 Problem15:Rootsofequations 37 Problem16:Specialseries 39 Problem17:Exactvaluesoftrigonometricfunctions 41 Problem18:Cosinequestions 43 Problem19:Howmanytermstogetclose? 45 Problem20:Functionalequations 47 Algebranotes 50 Commentsonalgebraproblems 51 3 Geometry 53 Introduction 53 Problem21:Goatgrazingproblems 55 Problem22:Compassesandstraightedge 57 Problem23:Tinychangesmeanalot?Ornot? 59 Problem24:Goldendiagonal 61 Problem25:Newton’sladderproblem 63 viii CONTENTS Problem26:Howlongisafanbelt? 65 Problem27:Afifthcenturytrick 67 Problem28:Atatangent 69 Problem29:Lowlights 71 Problem30:Rugbyplacekickingproblem 73 Geometrynotes 76 Commentsongeometryproblems 78 4 Chanceandcombinations 79 Introduction 79 Problem31:Tennistournaments 81 Problem32:Tumblingdiceandatrickytoss 83 Problem33:Tactilerandomwalks 85 Problem34:Moreamblings 87 Problem35:Oneinamillion? 89 Problem36:LoyaltyversusSwitch 91 Problem37:Thinkit’sgoingtoraintoday? 93 Problem38:Persistenceofrecessivegenes 95 Problem39:Countingmappings 97 Problem40:Areaunderthebellcurve 99 Chanceandcombinationsnotes 101 Commentsonchanceandcombinationsproblems 101 5 Movement 103 Introduction 103 Problem41:Cyclingquestions 105 Problem42:Ontherun 107 Problem43:SamLoyd’sferryboatproblem 109 Problem44:Cylinderproblems 111 Problem45:CatchingTheGoblin 113 Problem46:Flaginthewind 115 Problem47:Planetarymotion 117 Problem48:Elasticcollision 119 Problem49:Slipslidingaway? 121 Problem50:Fermat’sPrincipleandSnell’sLawofRefraction 123 Movementnotes 125 Commentsonmovementproblems 126 PART 1 Number Introduction This problem set involves only ordinary counting numbers 1,2,3,··· and their related fractions.Webeginwithquestionsaboutprimenumbers,thenapairofproblemsaboutrep- resenting numbers as sums of particular types. Problems 4 to 7 concern counting up how manywaysthereareofdoingsomething,whileProblems8amd9areaboutlogicaldeduction. Problem8isaboutcodebreakingwhileProblem9involvescunninglygleaninginformationin ordertoeliminatepossibilities.Thefinalproblemisaboutexploitingapieceofmathematical commonsense,whichisthatifwetrytoputtoomanythingsintotoofewplacestherehasto besomedoublingup. Since prime numbers, factorization properties, and counting formulae arise in our solu- tions,thereisashortsummaryofthesetopicsattheendofthechapterthattellsyouwhatis neededintacklingtheseparticularquestions.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.