PRODUCTION OF SALAMI FROM MEAT OF AQUATIC AND TERRESTRIAL MAMMALS by KARIN SARAH COLES KOEP Thesis in partial fulfilment for the degree of MASTER OF SCIENCE IN AGRICULTURE (ANIMAL SCIENCE) at Stellenbosch University Supervisor: Prof. L.C. Hoffman Co-supervisors: Prof. E. Slinde and Prof. L.M.T. Dicks April 2005 Stellenbosch DECLARATION I, the undersigned, hereby declare that the work contained in this thesis is my own original work and that I have not previously in its entirety or in part submitted it at any other university for a degree. Signature:______________ Date:___________________ ii SUMMARY The aim of this study was to develop a product using alternative red meat species, aquatic and terrestrial mammals, which would be acceptable to the consumer and suitable from a food safety aspect. Many of these alternative species are harvested seasonally. A product which is shelf stable needs to be developed to provide a supply of this meat all year round. The species used in this investigation were the Cape fur seal (Arctocephalus pusillus pusillus), the Grey seal (Halichoerus grypus) from the northern hemisphere, the Minke whale (Balaenoptera acutorostrata), horse, beef, mutton, blesbok (Damaliscus dorcas phillipsi) and springbok (Antidorcas marsupialis). Muscle (m. pectoralis) of Cape fur seal pups has a higher percentage fat (4.2g/100g) than the bulls (2.4g/100g), but similar levels of protein (23.2g/100g). Bull blubber samples have a higher percentage protein (26.6g/100g) than the pups (14.6g/100g), but a lower fat percentage (67.1g/100 g) compared with the pups (77.2g/100g). In the Cape fur seal bull meat, saturated fatty acids (SFA) contribute 33mg/100g, monounsaturated fatty acids (MUFA) 29mg/100 g and polyunsaturated fatty acids (PUFA) 38mg/100g of the total fatty acid content. In pups, the three fractions are 39, 30 and 31 mg/100g for SFA, MUFA and PUFA, respectively. Salami,prepared using exclusively seal meat, or seal meat with beef and pork, was produced in a pilot study, using two commercially available starter cultures. The pH values of all three batches started off at ca. 5.6, and dropped to 4.3. Water activity readings started off at 0.96 and dropped to 0.91 after 21 days. Salami produced from the meat of the Grey (Havert) seal and Minke whale, using three starter cultures, had recorded pH values (in both species), which started off between 5.68 and 5.92, and dropped to between 4.5 and 4.8 over the 21 days. Water activity showed an initial value of 0.96, which dropped to 0.90 after 21 days. The final force (N/cm2) that was needed to compress the salami samples was double that of the initial force required for the same species and starter culture combination. The raw seal meat contained 349.6 (mg/100 g sample) SFA, 271.6 (mg/100g sample) MUFA and 175.8 (mg/100g sample) PUFA, whilst the raw whale meat contained 312.3, 251.9 and 179.6 (mg/100g sample) SFA, MUFA and PUFA respectively. Fifteen batches of salami were made from horse, beef, mutton, blesbok and springbok, respectively, and starter cultures of Lactobacillus curvatus DF 38 (batch I), active bacteriocin iii producing Lactobacillus plantarum 423 (batch II) and then a mutant variation of Lactobacillus plantarum 423m, which did not produce the bacteriocin (batch III). Batch I had a higher final pH value (4.66), after 23 days, whereas the values for batches II and III were similar (4.42 and 4.46 respectively). On day 23 the water activity value was 0.90 for all starter cultures. Horse salami, in batch I, was the leanest in terms of fat content (34.34g/100g salami), with mutton salami having the highest fat content (37.52g/100g salami). Blesbok salami had the highest fat content in batch II (42.77g/100g meat), with beef the leanest (35.71g/100g meat). Salami made from horse and springbok proved to be the most desirable in terms of chemical composition, especially fatty acid profiles, with regard to P: S and n-6: n-3 ratios. Similar growth patterns in colony forming units (cfu) were recorded for L. plantarum 423, L. plantarum 423m and L. curvatus DF38 in MRS broth (Merck) at 30oC, although batch I reached asymptotic growth earlier. The percentage of L. plantarum 423 compared with the total population of microflora in mutton salami remained almost the same (80-95% variety) during the entire fermentation and maturation process. In horse salami, L. plantarum 423 was present at relatively low cell numbers (55-50% on day 1 and before smoking), but increased to 70% after smoking and stabilized to 70-80% for the remaining fermentation period. In beef salami, cell numbers in batch II decreased slightly during the first five days (from 95 to 70%), followed by an increase to 90%. In springbok salami, cell numbers in batch II remained fairly stable at 80-90%. In blesbok salami, batch II slowly decreased during the first three days, from 88% to 70%, then increased to 92% after 12 days and stabilized for the rest of the fermentation period. Similar results were recorded for batch I. Analytical sensory evaluation concluded that the salami prepared using starter culture I resulted in end products with lower sensory qualities. Salami prepared using blesbok and mutton also resulted in end products with lower sensory qualities and was perceived as significantly lower in salami flavour (P≤0.05) and higher in venison-like and mutton-like flavour respectively. The blesbok samples were rated significantly higher (P≤0.05) in sour meat aroma, sour meat flavour and venison-like flavour than the rest of the samples. The blesbok salami was rated significantly lowest for colour compared with the rest of the samples. The tastes of the springbok and horse salami were significantly (P≤0.05) more acceptable than those of the beef and blesbok salami. iv OPSOMMING Die doel van die studie was om, deur gebruik te maak van alternatiewe rooivleisspesies afkomstig van die see en land, ’n produk te ontwikkel wat beide dieetveilig en vir die verbruiker aanvaarbaar is. Aangesien van hierdie spesies seisonaal geoes word, moes die produk ook stabiel wees om voorraad dwarsdeur die jaar te voorsien. Die spesies wat tydens die studie ondersoek is, het die Kaapse pelsrob (Arctocephalus pusillus pusillus), die Grysrob (Halichoerus grypus) van die noordelike halfrond, die Minke-walvis (Balaenoptera acutorostrata), perd, bees, skaap, blesbok (Damaliscus dorcas phillipsi) en springbok (Antodircas marsupialis) ingesluit. Spiere (m. pectoralis) van Kaapse pelsrobkalfies het ’n betekenisvolle (P≤0.05) hoër persentasie vet (4.2g/100g) bevat as dié van pelsrobbulle (2.4g/100g), maar dieselfde hoeveelheid proteïen (23.2g/100g). Spekmonsters van pelsrobbulle het egter ’n betekenisvolle (P≤0.05) hoër proteïeninhoud (26.6g/100g) gehad as dié van die kalfies (14.6g/100g), maar ’n betekenisvolle laer vetinhoud (67.1g/100g vs 77.2g/100g). In die bulsvleis van die Kaapse pelsrob het die totale vetsuurinhoud bestaan uit 33mg/100g versadigde vetsure (VVS), 29mg/100g mono-onversadigde vetsure (MOVS), en 38mg/100g poli-onversadigde vetsure (POVS). In die geval van kalfies was hierdie waardes onderskeidelik 39, 30 en 31mg/100g. In ’n loodsondersoek is tradisionele salami voorberei deur gebruik te maak van robvleis alleenlik of robvleis gekombineer met bees- of varkvleis en twee kommersiële aanvangskulture. pH- waardes van al drie produkgroepe het vanaf ’n aanvangswaarde van 5.6 afgeneem tot 4.3. Wateraktiwiteitswaardes was aanvanklik 0.96 en het afgeneem tot 0.91 na 21 dae. In die geval van salami wat van Grysrob en die Minke-walvis gemaak is, het die pH-waardes vanaf die aanvanklike 5.68 en 5.92 na 21 dae afgeneem tot 4.5 en 4.8 respektiewelik. Die finale krag (N) wat nodig was om die salamimonsters saam te pers was dubbel die aanvanklike waardes vir dieselfde kombinasie van spesie en aanvangskultuur. Rou robvleismonsters het onderskeidelik 349.6mg/100g VVS, 271.6mg/100g MOVS en 175.8mg/100g POVS bevat teenoor 312.3, 239.9 en 179.6mg/100g in die geval van rou walvisvleis. In ’n daaropvolgende studie is drie groepe van vyf verskillende tradisionele salamis gebruik wat bestaan het uit die vleis van vyf verskillende spesies, naamlik perd, bees, skaap, blesbok en springbok, terwyl drie verskillende aanvangskulture gebruik is, naamlik Lactobacillus curvatus DF38 (groep I), aktiewe bakteriosienproduserende Lactobacillus plantarum 423 (groep II) asook ’n muteerde variasie van Lactobacillus plantarum 423 wat nie bakteriosien produseer nie (groep v III). Na 23 dae het groep I ’n hoër finale pH-waarde gehad (4.66) teenoor groepe II en III wat bykans dieselfde was (pH 4.42 en 4.46 onderskeidelik). Op dag 23 na vervaardiging was die wateraktiwiteitswaarde 0.90 vir al die aanvangskulture. Perdesalami van groep I het die laagste vetinhoud gehad (34.34g/100g) teenoor skaapsalami wat die hoogste was (37.52g/100g). In groep II het blesboksalami die hoogste vetinhoud vertoon (42.77g/100g) terwyl beessalami die laagste was (35.71g/100g). Springbok- en perdesalami het die gewenste chemiese samestelling gehad, veral ten opsigte van vetsuurprofiele, met verwysing na P:S en n-6:n-3 verhoudings. Dieselfde groeipatrone ten opsigte van kolonie-vormende eenhede (kve) is waargeneem vir L. plantarum 423, L. plantarum 423m en L. curvatus DF38 in MRS-kragsop by 30oC alhoewel groep I vroeër eksponensiële groei bereik het. In skaapsalami het die persentasie van L. plantarum 423 ten opsigte van die totale mikro-flora populasie bykans dieselfde (varierend tussen 80% en 95%) gebly tydens die volle fermentasie- en maturasieproses. In die geval van perdesalami het L. plantarum 423 aanvanklik lae selgetalle getoon (55% op dag een en voor beroking). Dit het egter tot 70% toegeneem na beroking en op 70-80% gestabiliseer vir die res van die fermentasieperiode. In beessalami van groep II het die persentasie kultuurselle effens afgeneem tydens die eerste vyf dae (van 90% tot 74%) waarna dit tot 90% toegeneem het. By die springboksalami van groep II het die selpersentasie redelik stabiel gebly – tussen 80-90%. In die geval van blesboksalami van groep II het die selpersentasie tydens die eerste drie dae stadig van 88% tot 70% afgeneem, waarna dit tot 92% op dag 12 toegeneem en op hierdie vlak gestabiliseer het vir die res van die fermentasieperiode. Soortgelyke resultate is vir groep I aangeteken. Volgens die analitiese sensoriese evaluasie is vasgestel dat die salami wat met aanvangskultuur I voorberei is, die swakste sensoriese kwaliteit vertoon het. Dieselfde waarneming is gedoen ten opsigte van salami wat van blesbok- en skaapvleis berei is. In laasgenoemde twee gevalle was die waarnemings ook dat die produkte ’n betekenisvolle (P≤0.05) swakker salamigeur gehad het en ’n sterker skaap- en wildsvleisgeur as die res van die monsters. Die blesbokmonsters is ook die laagste geëvalueer ten opsigte van kleur in vergelyking met die res van die monsters (P≤0.05). Die smaak van springbok- en perdesalami was meer aanvaarbaar (P≤0.05) teenoor dié van bees- en blesboksalami. vi ACKNOWLEDGEMENTS On the completion of this thesis I would like to express my sincere appreciation to the following people and institutions: Prof. L.C. Hoffman, my supervisor, for providing professional and friendly guidance throughout my study, as well as for providing the opportunity to attend the International Congress of Meat Science and Technology in Helsinki, Finland in 2004. Mr Erik Slinde, my co-supervisor, the driving force behind this research, for his constant support and financial assistance. He made it possible to conduct some of the research in Norway, and for this I am extremely grateful. Mr Hans Blom, my supervisor at Matforsk, Norway, for all his assistance and friendship. The technical staff at Stellenbosch University, and the Matforsk Food Research Institute in Norway. Special thanks to Resia van der Watt and Marvin Marais. Gail Jordaan, for advice on the statistical analysis possibilities of this trial. Mr Willem Burger, concession holder for harvesting of seals in Namibia, for his endless advice and answering of questions. My parents, Monica and Peter, for their never-ending support, emotional as well as financial. Without their belief in my capabilities and me, I would never have come this far. Vincent den Ouden, for his understanding and patience during the two years of trials and tribulations. All my friends, especially Liezel, Greg, Steven and Jacques, for their ongoing encouragement, humour, friendship and occasional invaluable assistance. vii LIST OF CONTENTS Chapter 1: Introduction 1 Chapter 2: Literature review 8 1. Introduction 8 2. Potential production of salami using the meat of alternative red meat 10 species 2.1. Background to salami 10 2.2. Ingredients 10 2.3. Use of starter cultures 12 2.4. Preparation of fermented sausage batter 14 2.5. Fermentation of sausage 15 2.6. Drying and maturation of sausage 15 2.7. Chemical and physical changes during production of fermented 17 sausage 2.8. Composition and nutritive value of salami 19 3. Alternative red meat species 21 3.1. Aquatic mammals 21 3.2. Terrestrial mammals 30 4. Aim of this study 37 5. References 38 Chapter 3: Chemical properties of the meat and blubber of the Cape fur seal 46 (Arctocephalus pusillus pusillus) 1. Abstract 46 2. Introduction 46 3. Materials and methods 48 3.1. Proximate analysis 49 3.2. Amino acid determination 49 3.3. Mineral determination 50 3.4. Fatty acid determination 50 3.5. Toxin evaluation 50 3.6. Statistical analysis 51 4. Results and discussion 51 4.1. Proximate analysis 52 4.2. Amino acid determination 52 4.3. Mineral determination 53 4.4. Fatty acid determination 54 4.5. Toxin evaluation 58 5. Conclusion 59 6. Acknowledgements 60 7. References 60 Chapter 4: Production of salami from meat of the Cape fur seal (Arctocephalus 64 pusillus pusillus) 1. Abstract 64 2. Introduction 64 viii 3. Materials and methods 66 3.1. Starter cultures and growth conditions 66 3.2. Meat preparation and fermentation 66 3.3. Recorded parameters 67 4. Results and discussion 68 4.1. Water activity and pH correlation 69 4.2. Colour variation between the three different batches of salami 72 4.3. Weight loss 78 5. Conclusion 79 6. Acknowledgements 80 7. References 80 Chapter 5: Production of salami from the Grey seal (Halichoerus grypus) and Minke 82 whale (Balaenoptera acutorostrata) meat 1. Abstract 82 2. Introduction 82 3. Materials and methods 84 3.1. Raw materials 84 3.2. Starter cultures and growth conditions 84 3.3. Meat preparation and fermentation 85 3.4. Recorded parameters 85 3.5. Chemical analysis 86 3.6. Myoglobin content and dissociation of heme from myoglobin 86 3.7. Fatty acid determination 87 3.8. Statistical analysis 88 4. Results and discussion 88 4.1. pH, water activity, colour and microbiological measurements 88 4.2. Chemical analysis 99 4.3. Weight loss and texture 99 4.4. Fatty acid determination 102 5. Conclusion 109 6. Acknowledgements 110 7. References 111 Chapter 6: Production of salami from beef, mutton, horse, blesbok and springbok 114 a) Chemical and physical parameters 1. Abstract 114 2. Introduction 114 3. Materials and methods 116 3.1. Raw materials 116 3.2. Starter cultures and growth conditions 116 3.3. Meat preparation and fermentation 116 3.4. Recorded parameters 118 3.5. Statistical analysis 119 4. Results and discussion 119 4.1. pH and water activity 119 4.2. Colour evaluation 123 4.3. Chemical analysis 127 4.4. Fatty acid determination 129 5. Conclusion 137 6. Acknowledgements 137 7. References 137 ix Chapter 6: Production of salami from beef, mutton, horse, blesbok and springbok 140 b) Microbiological investigation 1. Abstract 140 2. Introduction 141 3. Materials and methods 142 3.1. Starter cultures 142 3.2. Growth of starter cultures and bacteriocin production 143 3.3. Monitoring of changes in bacteria cell numbers during fermentation 143 3.4. Determining the percentage bacteriocin-producing strains 143 3.5. Growth of Listeria innocua 143 F 143 3.6. The effect of smoke on starter cultures 144 4. Results and discussion 144 4.1. Growth production 144 4.2. Microbiology 145 5. Conclusion 152 6. Acknowledgements 152 7. References 152 Chapter 6: Production of salami from beef, mutton, horse, blesbok and springbok 156 c) Sensory evaluation 1. Abstract 156 2. Introduction 157 3. Materials and methods 158 3.1. Sensory analysis by a trained panel 158 3.2. Statistical analysis 159 3.3. Sensory analysis by a consumer panel 159 4. Results and discussion 160 4.1. Sensory analysis by a trained panel 161 4.2. Sensory analysis by a consumer panel 164 5. Conclusions 167 6. Acknowledgements 168 7. References 168 Chapter 7: General conclusions 170 x
Description: