ebook img

Production of Lambda, Cascade and Omega Hyperons in ppbar Collisions at1.96 TeV Center of Mass Energy PDF

0.23 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Production of Lambda, Cascade and Omega Hyperons in ppbar Collisions at1.96 TeV Center of Mass Energy

Production of Λ0, Λ0, Ξ , and Ω Hyperons in pp Collisions at 1 ± ± √s = 1.96 TeV 2 T. Aaltonen, E. Brucken, F. Devoto, P. Mehtala, and R. Orava 3 Division of High Energy Physics, Department of Physics, 4 University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland 5 1 1 B. A´lvarez Gonz´alezv, B. Casal, J. Cuevasv, G. Gomez, E. Palenciaf, 0 6 2 7 T. Rodrigo, A. Ruiz, L. Scodellaro, I. Vila, and R. Vilar n a Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain J 8 5 1 S. Amerio, M. Baucecc, D. Bisellocc, G. Busettocc, G. Compostellacc, M. d’Erricocc, 9 ] x T. Dorigo, A. Gresele, I. Lazzizzera, D. Lucchesicc, and S. Pagan Grisocc 10 e - p 11 Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, e h ccUniversity of Padova, I-35131 Padova, Italy 12 [ 1 v 13 D. Amidei, M. Campbell, A. Eppig, D. Mietlicki, 6 9 14 G.L. Strycker, M. Tecchio, A. Varganov, and T. Wright 9 2 University of Michigan, Ann Arbor, Michigan 48109, USA 15 . 1 0 1 16 A. Anastassov, M. Schmitt, and D. Stentz 1 : Northwestern University, Evanston, Illinois 60208, USA v 17 i X r 18 A. Annovi, M. Cordelli, P. Giromini, F. Happacher, M.J. Kim, F. Ptohosh, and S. Torre a Laboratori Nazionali di Frascati, Istituto Nazionale 19 di Fisica Nucleare, I-00044 Frascati, Italy 20 J. Antos, P. Bartos, A. Brisuda, R. Lysak, and S. Tokar 21 Comenius University, 842 48 Bratislava, 22 Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia 23 ∗ G. Apollinari, J.A. Appel, W. Ashmanskas, W. Badgett, A. Beretvas, M. Binkley , 24 B. Braua, K. Burkett, F. Canelli12, S. Carron, M. Casarsa, P. Catastini, G. Chlachidze, 25 F. Chlebana, M.E. Convery, R. Culbertson, D. Dagenhart, M. Datta, P. Dong, 26 ∗ Deceased 1 J.C. Freeman, E. Gerchtein, C.M. Ginsburg, D. Glenzinski, A. Golossanov, 1 R.C. Group, S.R. Hahn, A. Hocker, W. Hopkinsg, E. James, S. Jindariani, T.R. Junk, 2 B. Kilminster, S. Lammel, J.D. Lewis, M. Lindgren, D.O. Litvintsev, T. Liu, 3 P. Lukens, R. Madrak, K. Maeshima, T. Miao, M.N. Mondragonk, R. Moore, 4 M.J. Morello, P. Movilla Fernandez, A. Mukherjee, P. Murat, J. Nachtmanm, 5 V. Papadimitriou, J. Patrick, A. Pronko, L. Ristori45, R. Roser, V. Rusu, P. Schlabach, 6 E.E. Schmidt, F.D. Snider, A. Soha, P. Squillacioti, J. Thomg, S. Tkaczyk, D. Tonelli, 7 D. Torretta, G. Velev, R.L. Wagner, W.C. Wester III, E. Wicklund, P. Wilson, 8 P. Wittichg, S. Wolbers, G.P. Yeh, K. Yim, J. Yoh, S.S. Yu, and J.C. Yun 9 Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA 10 A. Apresyan, V.E. Barnes, D. Bortoletto, G. Flanaganr, A.F. Garfinkel, M. Jones, 11 A.T. Laasanen, Q. Liu, F. Margaroli, K. Potamianos, N. Ranjan, and A. Sedov 12 Purdue University, West Lafayette, Indiana 47907, USA 13 T. Arisawa, K. Ebina, N. Kimura, K. Kondo, J. Naganoma, and K. Yorita 14 Waseda University, Tokyo 169, Japan 15 ∗ A. Artikov, J. Budagov, D. Chokheli, V. Glagolev, O. Poukhov , 16 F. Prokoshiny, A. Semenov, A. Simonenko, A. Sissakian∗, and I. Suslov 17 Joint Institute for Nuclear Research, RU-141980 Dubna, Russia 18 J. Asaadi, A. Aurisano, A. Elagin, R. Eusebi, D. Goldin, T. Kamon, V. Khotilovich, 19 V. Krutelyovd, E. Lee, S.W. Leew, P. McIntyre, A. Safonov, D. Toback, and M. Weinberger 20 Texas A&M University, College Station, Texas 77843, USA 21 B. Auerbach, C. Cuenca Almenar, U. Husemann, 22 ∗ S. Lockwitz, A. Loginov, M.P. Schmidt , and M. Stanitzki 23 Yale University, New Haven, Connecticut 06520, USA 24 F. Azfar, S. Farrington, C. Hays, J. Linacre, L. Oakes, and P. Renton 25 University of Oxford, Oxford OX1 3RH, United Kingdom 26 A. Barbaro-Galtieri, A. Cerrif, H.C. Fang, C. Haber, 27 2 C.-J. Lin, P. Lujan, J. Lys, J. Nielsene, and W.-M. Yao 1 Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 2 B.A. Barnett, S. Behari, B. Blumenfeld, G. Giurgiu, P. Maksimovic, and M. Mathis 3 The Johns Hopkins University, Baltimore, Maryland 21218, USA 4 P. Barriaee, F. Bedeschi, G. Bellettinidd, M. Bucciantoniodd, R. Carosi, 5 V. Cavaliereee, G. Chiarelli, M.A. Ciocciee, F. Cresciolidd, M. Dell’Orsodd, 6 A. Di Cantodd, B. Di Ruzza, S. Donatidd, C. Ferrazzaff, P. Garosiee, 7 P. Giannetti, M. Giunta, G. Introzzi, S. Lami, G. Latinoee, S. Leodd, S. Leone, 8 A. Menzione, G. Piacentino, G. Punzidd, F. Ruffiniee, L. Sartori, A. Scribanoee, 9 F. Scuri, F. Sforzadd, M. Trovatoff, N. Turiniee, E. Vatagaff, and G. Volpidd 10 Istituto Nazionale di Fisica Nucleare Pisa, ddUniversity of Pisa, 11 eeUniversity of Siena and ffScuola Normale Superiore, I-56127 Pisa, Italy 12 G. Bauer, G. Gomez-Ceballos, M. Goncharov, K. Makhoul, and C. Paus 13 Massachusetts Institute of Technology, 14 Cambridge, Massachusetts 02139, USA 15 D. Beecher, I. Bizjakii, L. Cerritoq, M. Lancaster, E. Nurse, and D. Waters 16 University College London, London WC1E 6BT, United Kingdom 17 J. Bellinger, D. Carlsmith, W.H. Chung, M. Herndon, 18 J. Nett, L. Pondrom, J. Pursley, and V. Ramakrishnan 19 University of Wisconsin, Madison, Wisconsin 53706, USA 20 D. Benjamin, A. Bocci, S. Cabrerax, J. Dengc, A.T. Goshaw, B. Jayatilaka, A.V. Kotwal, 21 M. Kruse, S.H. Oh, T.J. Phillips, C. Wang, A. Wen, J. Yamaoka, G.B. Yu, and Y. Zeng 22 Duke University, Durham, North Carolina 27708, USA 23 A. Bhatti, L. Demortier, M. Gallinaro, K. Goulianos, G. Lungu, S. Malik, and C. Mesropian 24 The Rockefeller University, New York, New York 10065, USA 25 K.R. Bland, J.R. Dittmann, M.J. Frank, K. Hatakeyama, 26 3 S. Hewamanage, N. Krumnackl, and Z. Wu 1 Baylor University, Waco, Texas 76798, USA 2 C. Blocker and D. Clark 3 Brandeis University, Waltham, Massachusetts 02254, USA 4 A. Bodek, H.S. Budd, Y.S. Chung, P. de Barbaro, 5 J.Y. Han, K.S. McFarland, and W.K. Sakumoto 6 University of Rochester, Rochester, New York 14627, USA 7 J. Boudreau, K. Gibson, C. Liu, A. Rahaman, and P.F. Shepard 8 University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA 9 A. Boveia, C. Grosso-Pilcher, M. Hurwitz, W. Ketchum, Y.K. Kim, D. Krop, 10 S. Kwang, H.S. Lee, S. Shiraishi, M. Shochet, J. Tang, S. Wilbur, and U.K. Yangp 11 Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA 12 L. Brigliadoribb, A. Castrobb, M. Deninno, M.K. Jha, P. Mazzanti, 13 N. Moggi, M. Mussinibb, F. Rimondibb, and S. Zucchellibb 14 Istituto Nazionale di Fisica Nucleare Bologna, 15 bbUniversity of Bologna, I-40127 Bologna, Italy 16 C. Bromberg, M. Campanelli, Z. Gunay-Unalan, M. Hussein, J. Huston, and K. Tollefson 17 Michigan State University, East Lansing, Michigan 48824, USA 18 S. Budd, B. Carls, D. Errede, S. Errede, H. Gerberich, M.S. Neubauer, 19 O. Norniella, K. Pitts, E. Rogers, A. Sfyrla, and G.A. Thompson 20 University of Illinois, Urbana, Illinois 61801, USA 21 P. Bussey, A. Robson, and R. St. Denis 22 Glasgow University, Glasgow G12 8QQ, United Kingdom 23 A. Buzatu, N. Hussain, P. Sinervo, B. Stelzer, O. Stelzer-Chilton, and A. Warburton 24 Institute of Particle Physics: McGill University, Montr´eal, 25 Qu´ebec, Canada H3A 2T8; Simon Fraser University, Burnaby, 26 4 British Columbia, Canada V5A 1S6; University of Toronto, 1 Toronto, Ontario, Canada M5S 1A7; and TRIUMF, 2 Vancouver, British Columbia, Canada V6T 2A3 3 C. Calancha, J.P. Fernandez, O. Gonz´alez, R. Mart´ınez-Ballar´ın, 4 I. Redondo, P. Ttito-Guzm´an, and M. Vidal 5 Centro de Investigaciones Energeticas Medioambientales 6 y Tecnologicas, E-28040 Madrid, Spain 7 S. Camarda, M. Cavalli-Sforza, G. De Lorenzo, C. Deluca, 8 S. Grinstein, M. Mart´ınez, L. Ortolan, and V. Sorin 9 Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, 10 E-08193, Bellaterra (Barcelona), Spain 11 A. Canepa, J. Heinrich, J. Keung, J. Kroll, E. Lipeles, N.S. Lockyer, C. Neuz, E. Pianori, 12 T. Rodriguez, E. Thomson, Y. Tu, P. Wagner, D. Whitesonc, and H.H. Williams 13 University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA 14 S. Carrillok, R. Field, I. Furic, N. Goldschmidt, S. Klimenko, 15 J. Konigsberg, A. Korytov, I. Oksuzian, A. Sukhanov, and F. V´azquezk 16 University of Florida, Gainesville, Florida 32611, USA 17 D. Cauz, C. Pagliarone, G. Paulettahh, A. Penzo, 18 M. Rossi, L. Santihh, P. Totarohh, and A. Zanetti 19 Istituto Nazionale di Fisica Nucleare Trieste/Udine, 20 I-34100 Trieste, hhUniversity of Trieste/Udine, I-33100 Udine, Italy 21 Y.C. Chen, S. Hou, A. Mitra, P.K. Teng, and S.M. Wang 22 Institute of Physics, Academia Sinica, 23 Taipei, Taiwan 11529, Republic of China 24 M. Chertok, J. Conway, C.A. Cox, D.J. Cox, R. Erbacher, R. Forrest, A. Ivanovo, 25 W. Johnson, R.L. Lander, D.E. Pellett, T. Schwarz, S.Z. Shalhout, and J.R. Smith 26 University of California, Davis, Davis, California 95616, USA 27 5 K. Cho, E.J. Jeon, K.K. Joo, D.H. Kim, H.S. Kim, H.W. Kim, J.E. Kim, S.B. Kim, 1 D.J. Kong, J.S. Lee, C.S. Moon, Y.D. Oh, S. Uozumi, Y.C. Yang, and I. Yu 2 Center for High Energy Physics: Kyungpook National University, 3 Daegu 702-701, Korea; Seoul National University, Seoul 151-742, 4 Korea; Sungkyunkwan University, Suwon 440-746, 5 Korea; Korea Institute of Science and Technology Information, 6 Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, 7 Korea; Chonbuk National University, Jeonju 561-756, Korea 8 J.P. Chou, M. Franklin, J. Guimaraes da Costa, and S. Moed 9 Harvard University, Cambridge, Massachusetts 02138, USA 10 C.I. Ciobanu, M.Corbo, N. d’Ascenzot, N. Ershaidataa, V. Savelievt, and A. Savoy-Navarro 11 LPNHE, Universite Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France 12 A. Clark, J.E. Garcia, A. Lister, and X. Wu 13 University of Geneva, CH-1211 Geneva 4, Switzerland 14 S. De Cecco, S. Giagugg, M. Iorigg, P. Mastrandrea, and M. Rescigno 15 Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, 16 ggSapienza Universit`a di Roma, I-00185 Roma, Italy 17 M. D’Onofrio, G. Mancab, R. McNultyi, A. Mehta, and T. Shears 18 University of Liverpool, Liverpool L69 7ZE, United Kingdom 19 M. Feindt, M. Heck, D. Horn, M. Kreps, T. Kuhr, J. Lueck, 20 C. Marino, J. Morlock, Th. Muller, A. Schmidt, and F. Wick 21 Institut fu¨r Experimentelle Kernphysik, 22 Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany 23 J. Galyardt, D. Jang, S.Y. Jun, M. Paulini, E. Pueschel, J. Russ, and J. Thome 24 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA 25 V. Giakoumopoulou, N. Giokaris, A. Manousakis-Katsikakis, and C. Vellidis 26 6 University of Athens, 157 71 Athens, Greece 1 M. Gold, I. Gorelov, S. Seidel, J. Strologas, and M. Vogel 2 University of New Mexico, Albuquerque, New Mexico 87131, USA 3 E. Halkiadakis, D. Hare, D. Hidas, A. Lath, and S. Somalwar 4 Rutgers University, Piscataway, New Jersey 08855, USA 5 A. Hamaguchi, Y. Katon, T. Okusawa, Y. Seiya, 6 T. Wakisaka, K. Yamamoto, and T. Yoshidaj 7 Osaka City University, Osaka 588, Japan 8 K. Hara, S.H. Kim, M. Kurata, H. Miyake, Y. Nagai, K. Sato, M. Shimojimas, 9 Y. Sudo, K. Takemasa, Y. Takeuchi, T. Tomura, and F. Ukegawa 10 University of Tsukuba, Tsukuba, Ibaraki 305, Japan 11 M. Hare, A. Napier, S. Rolli, K. Sliwa, and B. Whitehouse 12 Tufts University, Medford, Massachusetts 02155, USA 13 R.F. Harr, P.E. Karchin, and M.E. Mattson 14 Wayne State University, Detroit, Michigan 48201, USA 15 R.E. Hughes, K. Lannonu, J. Pilot, J.S. Wilson, B.L. Winer, and H. Wolfe 16 The Ohio State University, Columbus, Ohio 43210, USA 17 T. LeCompte, L. Nodulman, A.A. Paramonov, and A.B. Wicklund 18 Argonne National Laboratory, Argonne, Illinois 60439, USA 19 I. Nakano 20 Okayama University, Okayama 700-8530, Japan 21 C. Plager and R. Wallny 22 University of California, Los Angeles, 23 Los Angeles, California 90024, USA 24 I. Shreyber 25 7 Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia 1 2 (Dated: January 18, 2011) Abstract We report a set of measurements of inclusive invariant p differential cross sections of Λ0, Λ0, T ± ± Ξ , and Ω hyperons reconstructed in the central region with pseudorapidity η < 1 and p up T | | to 10 GeV/c. Events are collected with a minimum-bias trigger in pp¯collisions at a center-of-mass energy of 1.96 TeV using the CDF II detector at the Tevatron Collider. As p increases, the slopes T of the differential cross sections are similar not only to each other but also to those of mesons, which could indicate a universality of the particle production in p The invariant differential cross T sections are also presented for different charged-particle multiplicity intervals. 8 Ever since their discovery in cosmic ray interactions [1], particles containing strange 1 quarkshavebeenextensively studiedatparticlecolliders(e+e− [2], ep[3],pp¯[4,5]andpp[6]). 2 The process by which hadrons in general are produced from interactions is an unsolved 3 problem in the standard model, and a detailed analysis of production properties of particles 4 with different quark flavors and numbers of quarks could pave the way to understanding the 5 process from first principles. The data on strange particle production can also be used to 6 refine phenomenological models and set parameters, such as the strange quark suppression 7 constant in event generators, which have become an integral part of any data analysis. 8 Interest in particles containing strange quarks increased with the introduction of the quark- 9 gluon plasma (QGP). Formation of quark-gluon plasma in a collision could manifest itself as 10 an enhanced production of strange particles such as kaons and hyperons [7]. To isolate QGP 11 signatures in heavy-ion collision data, understanding the particle production properties from 12 simple nucleon interactions is necessary. 13 Thereareampledataontheproductionofparticleswithonestrangequark, butverylittle 14 available on particles with two or more [8, 9]. Previous studies of hyperons from colliders 15 such as RHIC [10], SppS [11], and the Tevatron [12, 13] were limited by low sample statistics 16 and the limited accessible range of hyperon momentum component transverse to the beam 17 direction (p ). In this Letter, we report on a study of the hyperons Λ0 (quark content uds), 18 T Ξ− (dss), and Ω− (sss) and their corresponding antiparticles (Λ0, Ξ+, and Ω+). For these 19 hyperons, the inclusive invariant p differential cross sections are measured up to p of 10 20 T T GeV/c, based on 100 million minimum-bias events collected with the CDF II detector. 21 ∼ The measurements reported here are the current best from any hadron collider experiment 22 in terms of statistics and p range. 23 T The CDF II detector is described in detail elsewhere [14]. The components most relevant 24 to this analysis are those that comprise the tracking system, which is within a uniform axial 25 magnetic field of 1.4T. The inner tracking volume is composed of a system of eight layers of 26 silicon microstrip detectors ranging in radius from 1.5 to 28.0 cm [15] in the pseudorapidity 27 region η < 2 [16]. The remainder of the tracking volume is occupied by the Central Outer 28 | | Tracker (COT). The COT is a cylindrical drift chamber containing 96 sense-wire layers 29 grouped in eight alternating superlayers of axial and stereo wires [17]. Its active volume 30 covers 40 to 140 cm in radius and z < 155 cm. The transverse-momentum resolution of 31 | | tracks reconstructed using COT hits is σ(p )/p2 0.0017/(GeV/c). 32 T T ∼ 9 Events for this analysis are collected with a “minimum-bias” (MB) trigger, which selects 1 beamcrossingswithatleastonepp¯interactionbyrequiringatimingcoincidenceforsignalsin 2 bothforwardandbackwardgasCherenkov counters [18]covering theregions3.7 < η < 4.7. 3 | | TheMBtriggerisrate-limitedtokeepthefinaltriggeroutputat1Hz. Primaryeventvertices 4 are identified by the convergence of reconstructed tracks along the beam axis. Events are 5 accepted that contain a reconstructed vertex in the fiducial region z 60 cm centered 6 vtx | | ≤ around the nominal CDF origin (z = 0). When an event has more than one vertex, the 7 highest quality vertex, usually the one with the most associated tracks, is selected and it 8 is required that there be no other vertices within 5 cm of this vertex. This selection 9 ± introduces a bias toward high multiplicity events as the instantaneous luminosity increases. 10 To combine events collected at different average instantaneous luminosities, we determine a 11 per-event weight as a function of the charged-track multiplicity N in order to match the 12 ch multiplicity distribution of a data sample where the average number of interactions is less 13 than 0.3 per bunch crossing. For the N calculation, tracks are required to have a high 14 ch track-fit quality with χ2 per degree-of-freedom (χ2/dof) less than 2.5, and more than five 15 hits in at least two axial and two stereo COT segments. It is further required that tracks 16 satisfy η < 1, impact parameter d [19] less than 0.25 cm, the distance along the z-axis 17 0 | | (δZ )between the event vertex and the track position at the point of closest approach to the 18 0 vertex in the r φ plane be less than 2 cm, and p > 0.3 GeV/c. The p selection is to 19 T T − minimize the inefficiency of the track-finding algorithm for low momentum tracks. 20 We search for Λ0 pπ− decays using tracks with opposite-sign charge and p > 0.325 21 T → GeV/c that satisfy the χ2/dof and COT segment requirements. In this Letter, any reference 22 to a specific hyperon state implies the antiparticle state as well. For each two-track combi- 23 nation we calculate their intersection coordinate in the r φ plane. Once this intersection 24 − point, referred to as the secondary vertex, is found, the z-coordinate of each track (Z and 25 1 Z ) is calculated at that point. If the distance Z Z is less than 1.5 cm, the tracks are 26 2 1 2 | − | considered to originate from a Λ0 candidate decay. The pair is traced back to the vertex and 27 we require δZ be less than 2 cm, and the d be less than 0.25 cm. To reduce backgrounds 28 0 0 29 further, we require the Λ0 decay length LΛ0, the distance in the r φ plane between the − primary and secondary vertices, to be greater than 2.5 cm and less than 50 cm. 30 The invariant mass M of the two-track system is calculated by attributing the proton 31 pπ mass to the track with the higher p , as preferentially expected by the kinematics of a Λ0 32 T 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.