ebook img

Production of forward di-jet in p+Pb collisions in the small-$x$ improved TMD factorization framework PDF

0.34 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Production of forward di-jet in p+Pb collisions in the small-$x$ improved TMD factorization framework

Production of forward di-jet in p+Pb collisions in the small-x improved TMD factorization framework 7 1 0 2 b e F Krzysztof Kutak 4 InstituteofNuclearPhysics,PolishAcademyofSciences, 2 Radzikowskiego152,31-342Kraków,Poland E-mail: [email protected] ] h p - Wereportonrecentstudyoftheproductionofforwarddi-jetsinproton-protonandproton-lead p e collisionsattheLargeHadronColliderwithImprovedTransversalMomentumFactorization[24]. h [ The results as compared to results obtained within High Energy Factorization show noticable effectsrelatedtodetailedtreatmentofnonlineareffects. 2 v 1 7 3 0 0 . 1 0 7 1 : v i X r a 38thInternationalConferenceonHighEnergyPhysics 3-10August2016 Chicago,USA (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommons Attribution-NonCommercial-NoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0). http://pos.sissa.it/ Forwarddi-jet 1. Introduction Measurementsofforwardjetorparticleproductioninhigh-energyhadroniccollisionsprovide uniqueopportunitiestostudytheQCDdynamics[1,2,3,4,5,6]andinparticularofthenon-linear partonsaturationregime[7,8]. Suchprocesses,inwhich,forkinematicalreasons,high-momentum partons from one of the colliding hadrons mainly scatter with small-momentum partons from the other,arecalleddilute-densecollisions. Indeed,thedensityofthelarge-xpartonsintheprojectile hadronissmall,whilethedensityofthesmall-xgluonsinthetargethadronislarge,andtheformer, wellunderstoodinperturbativeQCD,canbeusedtoprobethedynamicsofthelatter. Thisistrue alreadyinproton-protoncollisions, althoughusingatargetnucleusdoesenhancethedilute-dense asymmetryofsuchcollisions. RHICmeasurementshaveprovidedsomeevidenceforthepresenceofsaturationeffectsinthe data, the most compelling of which is the successful description of forward di-hadron production [9, 10, 11], using the most up-to-date theoretical tools available at the time in the Color Glass Condensate (CGC) framework [12, 13]. In particular, this approach predicted the suppression of azimuthalcorrelationsind+Aucollisionscomparedtop+pcollisions[7],whichwasobservedlater experimentally[14,15]. Inthiscontext,weshallconsiderforwarddi-jetproductioninproton-leadversusproton-proton collisions. Inthatcase,itwasshownin[16]thatthefullcomplexityoftheCGCmachineryisnot needed. Indeed,forthedi-hadronprocessatRHICenergies,noparticularorderingofthemomen- tum scales involved is assumed in CGC calculations, while at the LHC one can take advantage of the presence of final-state partons with transverse momenta much larger than the saturation scale to obtain simplifications. On the flip side, different complications - left for future studies - are expected to arise due to QCD dynamics relevant at large transverse momenta and not part of the CGCframework, suchasSudakovlogarithms[17,18,19,20]orcoherenceintheQCDevolution ofthegluondensity[21,22,23]. The goal of this article is to report on application [24] of that new formulation, dubbed im- provedTMD(ITMD)factorizationwhichisageneralizationforconsideredprocessofHighEnergy Factorization[1,25]andTMDfactorization[26]. Bycomparingtheforwarddi-jetproductioncross sectionsinproton-leadandproton-protoncollisions,wecanclearlyseetheonsetofpartonsatura- tioneffects, aswegofromakinematicalregimeinwhichk ∼P towardsonewherek ∼Q , and t t t s we obtain a good estimation of the size of those effects where they are the biggest, which is for nearly back-to-back jets. We note that probing non-linear effects of similar strength with single- inclusiveobservablesrequirestomaketheonlytransversemomentuminvolvedinthoseprocesses oftheorderofthesaturationscale,whichmaynotbeeasyexperimentally. Withdi-jets,assuming P ∼20GeVandk ∼Q ∼2GeV,wecanreachR ∼0.5. t t s pPb 2. TheITMDfactorizationformulaforforwarddi-jetsindilute-densecollisions Weconsidertheprocessofinclusiveforwarddi-jetproductioninhadroniccollisions p(p )+A(p )→ j (p )+ j (p )+X , (2.1) p A 1 1 2 2 wherethefour-momentaoftheprojectileandthetargetaremasslessandpurelylongitudinal. The longitudinalmomentumfractionsoftheincomingpartonfromtheprojectile,x ,andthegluonfrom 1 1 Forwarddi-jet thetarget,x ,canbeexpressedintermsoftherapidities(y ,y )andtransversemomenta(p ,p ) 2 1 2 t1 t2 oftheproducedjetsas x = p+1 +p+2 = √1 (|p |ey1+|p |ey2) , x = p−1 +p−2 = √1 (cid:0)|p |e−y1+|p |e−y2(cid:1) . (2.2) 1 p+ s 1t 2t 2 p− s 1t 2t p A By looking at jets produced in the forward direction, we effectively select those fractions to be x ∼1 and x (cid:28)1. Since the target A is probed at low x , the dominant contributions come from 1 2 2 thesubprocessesinwhichtheincomingpartononthetargetsideisagluon qg→qg, gg→qq¯, gg→gg. (2.3) Moreover,thelarge-xpartonsofthediluteprojectilearedescribedintermsoftheusualparton distributionfunctionsofcollinearfactorization f (x )whilethesmall-xgluonsofthedensetarget a/p 1 are described by TMD distributions Φ (x ,k ). Indeed, the momentum of the incoming gluon g/A 2 t fromthetargetisnotonlylongitudinalbutalsohasanon-zerotransversecomponentofmagnitude k =|p +p | (2.4) t 1t 2t which leads to imbalance of transverse momentum of the produced jets: k2 = |p |2+|p |2+ t 1t 2t 2|p ||p |cos∆φ. ThevaliditydomainofITMDfactorizationis 1t 2t Q (x )(cid:28)P (2.5) s 2 t whereP isthehardscaleoftheprocess,relatedtotheindividualjetmomentaP ∼|p |,|p |. By t t 1t 2t contrast,thevalueofk canbearbitrary. t TheITMDfactorizationformulareads[16] dσpA→dijets+X = αs2 ∑ x1fa/p(x1)∑2 K(i) (P,k )Φ(i) (x ,k ). (2.6) d2Pd2k dy dy (x x s)2 1+δ ag∗→cd t t ag→cd 2 t t t 1 2 1 2 a,c,d cd i=1 (i) ItinvolvesseveralgluonTMDsΦ (2perchannel),withdifferentoperatordefinitions,thatare ag→cd (i) accompaniedbydifferenthardfactorsK . Thosewherecomputedin[16]usingeitherFeyn- ag∗→cd man diagram techniques, or color-ordered amplitude methods. They encompass the improvement overtheTMDfactorizationformuladerivedinRef.[27]wherethematrixelementswereon-shell andafunctionofP only. t WewouldliketopointoutthattheITMDfactorizationformula2.6wasbuildinordertocon- tainboththeHEFandtheTMDexpressionsasitslimitingcases,andassuchshouldbeconsidered no more than an interpolating formula. We note however, that if one would be able to directly derive a factorization formula valid for Q (cid:28)P regardless of the value of k , any additional term s t t comparedto2.6shouldvanishinbothlimitsQ ∼k (cid:28)P andQ (cid:28)k ∼P. s t t s t t 3. Numericalstudiesoftheforwarddi-jetcrosssection We move now to the numerical results1 for forward di-jet production in p+p and p+Pb colli- sionsattheLHC.Weconsideracenter-of-massenergyof8.16TeV,andgenerateallourpredictions 1thecalculationswereperformedusingMonteCarloprograms[28,29] 2 Forwarddi-jet 1.8 ITMD (KS) with S(x), p+p ITMD, d=0.5 ITMD (KS) with S(x), d=0.75, p+Pb ITMD, d=0.75 1.6 100.0 √S = 8.16 TeV √S = 8.16 TeV 1.4 pT1>pT2 > 20 GeV pT1>pT2 > 20 GeV 3.5<y1,y2<4.5 ] 3.5<y1,y2<4.5 1.2 b n [Δφ 10.0 RpA1.0 d / σ d 0.8 1.0 0.6 0.4 0.1 0.2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 Δφ Δφ Figure1: Leftplot: differentialcrosssectionasafunctionoftheazimuthalanglebetweenthejetsforp+p andp+Pbcollisions(rescaledbythenumberofnucleons). Thedistributionsareidenticaleverywhereexpect near∆φ (cid:39)π,wheresaturationarethestrongest. Rightplot: nuclearmodificationfactorsfortwovaluesof thenuclearsaturationscale,providinganuncertaintyband. withtheforwardregiondefinedastherapidityrange3.5<y<4.5ononesideofthedetector. The two hardest jets are required to lie within this region and we also impose a cut on the minimal transverse momentum of each two jets: p =20GeV. In such a setup, the cross section still may t0 be divergent due to collinear singularities. These are cut-off by applying a jet algorithm on the final state momenta with a delta-phi-rapidity cut R = 0.5. Finally, we require the jets to be or- dered according to increasing transverse momentum, that is we have |p |>|p |> p . For the t1 t2 t0 collinearpartondistributionsthatentertheITMDformula,wechosethegeneral-purposeCT10set. For the central value of the factorization and renormalization scale, we choose the average trans- versemomentumofthetwoleadingjets, µ =µ = 1(|p |+|p |). Wewillproduceerrorbands F R 2 t1 t2 corresponding to the renormalization and factorization scale uncertainties by varying the central numbersfromhalftotwicetheirvalue. ForthevariousobservablesO shownbelow,wealsoconsiderthenuclearmodificationfactors definedas dσp+Pb dO R = . (3.1) pPb dσp+p A dO withA=208forPb. Inourapproach, intheabsenceofsaturationeffects, orinthecaseinwhich theyareequallystronginthenucleusandintheproton,thisratioisequaltounity. If,however,the non-linear evolution plays a more important role in the case of the nucleus, the R ratio will be pPb suppressedbelow1. Westartbyinvestigatingtheazimuthalcorrelations,withtheazimuthalanglebetweenthejets ∆φ definedtoliewithin0<∆φ <π. 3 Forwarddi-jet 1.8 1.8 ITMD, d=0.5 ITMD, d=0.5 HEF, d=0.5 HEF, d=0.5 1.6 1.6 √S = 8.16 TeV √S = 8.16 TeV 1.4 pT1>pT2 > 20 GeV 1.4 pT1>pT2 > 20 GeV 3.5<y1,y2<4.5 3.5<y1,y2<4.5 1.2 1.2 A A p1.0 p1.0 R R 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 20.0 25.0 30.0 35.0 40.0 45.0 50.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 pT1 pT2 Figure2: Nuclearmodificationfactorsasafunctionofthetransversemomentumoftheleading(left)and subleading(right)jet,comparingthenewITMDapproachwithpreviouslyobtainedHEFresults. InFig.1wecomparethe∆Φdistributioninp+pandp+Pbcollisions. Afterrescalingthep+Pb crosssectionbythenumberofnucleons,weobtainidenticaldistributionsalmosteverywhere. Itis onlyfornearlyback-to-backjets,around∆φ (cid:39)π,thatsaturationeffectsinduceadifference. This difference is better appreciated on the nuclear modification factor, which goes from unity to 0.6, as ∆φ varies from ∼2.7 to π. Two values of the parameter c have been considered, which makes upanuncertaintybandthatturnsouttoberathersmall. Thismeansthattheuncertaintyrelatedto thevalueofthesaturationscaleoftheleadnucleusdoesnotstronglyinfluencethepredictedR pPb suppression. Finally, in Fig. 2 we display the nuclear modification factors as a function of the transverse momentum of the leading and sub-leading jet. Our conclusions are similar for these observables: thenewITMDpredictionsaresimilartothepreviouslyobtainedHEFresults,duetothefactthatthe ITMD/HEFratioissimilarinp+pandp+Pbcollisions. ThismeansthattheHEFframework,which isincorrectfornearlyback-to-backjets-sinceinthisformalismallthegluonTMDsareconsidered equalregardlessofthekinematics-canneverthelessbesafelyusedforR calculations. pPb 4. Conclusions In this paper, we have studied forward di-jet production in proton-proton and proton-lead collisions, using the small-x improved TMD factorization framework Eq. (2.6. We have obtained thefirstnumericalimplementationofthisformalism,andthefirstpredictionsforforwarddi-jetsat theLHC,aprocesswhichisparticularlyinterestingfromsmall-xpointofview. Ourresultsforthe nuclearmodificationfactorsinp+Pbvsp+pcollisionsconfirmtheconclusionsobtainedin[30]in theHEFframework,thatfornearlyback-to-backjets,nonnegligibleeffectsofgluonsaturationare tobeexpectedasonegoesfromp+ptop+Pbcollisions. 4 Forwarddi-jet Acknowledgements K.KacknowledgessupportbyNarodoweCentrumNaukiwithSonataBisgrantDEC-2013/10/E/ST2/00656. The article is based on paper written with P. Kotko, C. Marquet, E. Petreska, S. Sapeta, A. van Hameren References [1] M.Deak,F.Hautmann,H.JungandK.Kutak,JHEP0909(2009)121 doi:10.1088/1126-6708/2009/09/121[arXiv:0908.0538[hep-ph]]. [2] M.Deak,F.Hautmann,H.JungandK.Kutak,arXiv:0908.1870[hep-ph]. [3] M.Deak,F.Hautmann,H.JungandK.Kutak,arXiv:1012.6037[hep-ph]. [4] M.Deak,F.Hautmann,H.JungandK.Kutak,Eur.Phys.J.C72(2012)1982 doi:10.1140/epjc/s10052-012-1982-5[arXiv:1112.6354[hep-ph]]. [5] M.Deak,F.Hautmann,H.JungandK.Kutak,arXiv:1112.6386[hep-ph]. [6] K.KutakandS.Sapeta,Phys.Rev.D86(2012)094043doi:10.1103/PhysRevD.86.094043 [arXiv:1205.5035[hep-ph]]. [7] C.Marquet,Nucl.Phys.A796(2007)41. [8] L.V.Gribov,E.M.LevinandM.G.Ryskin,Phys.Rept.100(1983)1. [9] J.L.AlbaceteandC.Marquet,Phys.Rev.Lett.105(2010)162301. [10] A.Stasto,B.-W.XiaoandF.Yuan,Phys.Lett.B716(2012)430. [11] T.LappiandH.Mantysaari,Nucl.Phys.A908(2013)51. [12] F.Gelis,E.Iancu,J.Jalilian-MarianandR.Venugopalan,Ann.Rev.Nucl.Part.Sci.60(2010)463. [13] J.L.AlbaceteandC.Marquet,Prog.Part.Nucl.Phys.76(2014)1. [14] A.Adareetal.[PHENIXCollaboration],Phys.Rev.Lett.107(2011)172301. [15] E.Braidot[STARCollaboration],arXiv:1005.2378[hep-ph]. [16] P.Kotko,K.Kutak,C.Marquet,E.Petreska,S.SapetaandA.vanHameren,JHEP1509(2015)106 [17] A.H.Mueller,B.-W.XiaoandF.Yuan,Phys.Rev.Lett.110(2013)082301. [18] A.H.Mueller,B.-W.XiaoandF.Yuan,Phys.Rev.D88(2013)114010. [19] A.vanHameren,P.Kotko,K.KutakandS.Sapeta,Phys.Lett.B737(2014)335. [20] K.Kutak,Phys.Rev.D91(2015)no.3,034021. [21] M.Ciafaloni,Nucl.Phys.B296(1988)49. [22] S.Catani,F.FioraniandG.Marchesini,Nucl.Phys.B336(1990)18. [23] S.Catani,F.FioraniandG.Marchesini,Phys.Lett.B234(1990)339. [24] A.vanHameren,P.Kotko,K.Kutak,C.Marquet,E.PetreskaandS.Sapeta,JHEP1612(2016)034 [25] S.Catani,M.CiafaloniandF.Hautmann,Nucl.Phys.B366(1991)135. 5 Forwarddi-jet [26] R.Angeles-Martinezetal.,ActaPhys.Polon.B46(2015)no.12,2501 doi:10.5506/APhysPolB.46.2501[arXiv:1507.05267[hep-ph]]. [27] F.Dominguez,C.Marquet,B.W.XiaoandF.Yuan,Phys.Rev.D83(2011)105005 doi:10.1103/PhysRevD.83.105005[arXiv:1101.0715[hep-ph]]. [28] A.vanHameren,arXiv:1611.00680[hep-ph]. [29] P.Kotko.LxJet,thecodeisavailableatLxJet.html.http://annapurna.ifj.edu.pl/pkotko/ [30] A.vanHameren,P.Kotko,K.Kutak,C.MarquetandS.Sapeta,Phys.Rev.D89(2014)no.9,094014 doi:10.1103/PhysRevD.89.094014[arXiv:1402.5065[hep-ph]]. 6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.