Production of forward di-jet in p+Pb collisions in the small-x improved TMD factorization framework 7 1 0 2 b e F Krzysztof Kutak 4 InstituteofNuclearPhysics,PolishAcademyofSciences, 2 Radzikowskiego152,31-342Kraków,Poland E-mail: [email protected] ] h p - Wereportonrecentstudyoftheproductionofforwarddi-jetsinproton-protonandproton-lead p e collisionsattheLargeHadronColliderwithImprovedTransversalMomentumFactorization[24]. h [ The results as compared to results obtained within High Energy Factorization show noticable effectsrelatedtodetailedtreatmentofnonlineareffects. 2 v 1 7 3 0 0 . 1 0 7 1 : v i X r a 38thInternationalConferenceonHighEnergyPhysics 3-10August2016 Chicago,USA (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommons Attribution-NonCommercial-NoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0). http://pos.sissa.it/ Forwarddi-jet 1. Introduction Measurementsofforwardjetorparticleproductioninhigh-energyhadroniccollisionsprovide uniqueopportunitiestostudytheQCDdynamics[1,2,3,4,5,6]andinparticularofthenon-linear partonsaturationregime[7,8]. Suchprocesses,inwhich,forkinematicalreasons,high-momentum partons from one of the colliding hadrons mainly scatter with small-momentum partons from the other,arecalleddilute-densecollisions. Indeed,thedensityofthelarge-xpartonsintheprojectile hadronissmall,whilethedensityofthesmall-xgluonsinthetargethadronislarge,andtheformer, wellunderstoodinperturbativeQCD,canbeusedtoprobethedynamicsofthelatter. Thisistrue alreadyinproton-protoncollisions, althoughusingatargetnucleusdoesenhancethedilute-dense asymmetryofsuchcollisions. RHICmeasurementshaveprovidedsomeevidenceforthepresenceofsaturationeffectsinthe data, the most compelling of which is the successful description of forward di-hadron production [9, 10, 11], using the most up-to-date theoretical tools available at the time in the Color Glass Condensate (CGC) framework [12, 13]. In particular, this approach predicted the suppression of azimuthalcorrelationsind+Aucollisionscomparedtop+pcollisions[7],whichwasobservedlater experimentally[14,15]. Inthiscontext,weshallconsiderforwarddi-jetproductioninproton-leadversusproton-proton collisions. Inthatcase,itwasshownin[16]thatthefullcomplexityoftheCGCmachineryisnot needed. Indeed,forthedi-hadronprocessatRHICenergies,noparticularorderingofthemomen- tum scales involved is assumed in CGC calculations, while at the LHC one can take advantage of the presence of final-state partons with transverse momenta much larger than the saturation scale to obtain simplifications. On the flip side, different complications - left for future studies - are expected to arise due to QCD dynamics relevant at large transverse momenta and not part of the CGCframework, suchasSudakovlogarithms[17,18,19,20]orcoherenceintheQCDevolution ofthegluondensity[21,22,23]. The goal of this article is to report on application [24] of that new formulation, dubbed im- provedTMD(ITMD)factorizationwhichisageneralizationforconsideredprocessofHighEnergy Factorization[1,25]andTMDfactorization[26]. Bycomparingtheforwarddi-jetproductioncross sectionsinproton-leadandproton-protoncollisions,wecanclearlyseetheonsetofpartonsatura- tioneffects, aswegofromakinematicalregimeinwhichk ∼P towardsonewherek ∼Q , and t t t s we obtain a good estimation of the size of those effects where they are the biggest, which is for nearly back-to-back jets. We note that probing non-linear effects of similar strength with single- inclusiveobservablesrequirestomaketheonlytransversemomentuminvolvedinthoseprocesses oftheorderofthesaturationscale,whichmaynotbeeasyexperimentally. Withdi-jets,assuming P ∼20GeVandk ∼Q ∼2GeV,wecanreachR ∼0.5. t t s pPb 2. TheITMDfactorizationformulaforforwarddi-jetsindilute-densecollisions Weconsidertheprocessofinclusiveforwarddi-jetproductioninhadroniccollisions p(p )+A(p )→ j (p )+ j (p )+X , (2.1) p A 1 1 2 2 wherethefour-momentaoftheprojectileandthetargetaremasslessandpurelylongitudinal. The longitudinalmomentumfractionsoftheincomingpartonfromtheprojectile,x ,andthegluonfrom 1 1 Forwarddi-jet thetarget,x ,canbeexpressedintermsoftherapidities(y ,y )andtransversemomenta(p ,p ) 2 1 2 t1 t2 oftheproducedjetsas x = p+1 +p+2 = √1 (|p |ey1+|p |ey2) , x = p−1 +p−2 = √1 (cid:0)|p |e−y1+|p |e−y2(cid:1) . (2.2) 1 p+ s 1t 2t 2 p− s 1t 2t p A By looking at jets produced in the forward direction, we effectively select those fractions to be x ∼1 and x (cid:28)1. Since the target A is probed at low x , the dominant contributions come from 1 2 2 thesubprocessesinwhichtheincomingpartononthetargetsideisagluon qg→qg, gg→qq¯, gg→gg. (2.3) Moreover,thelarge-xpartonsofthediluteprojectilearedescribedintermsoftheusualparton distributionfunctionsofcollinearfactorization f (x )whilethesmall-xgluonsofthedensetarget a/p 1 are described by TMD distributions Φ (x ,k ). Indeed, the momentum of the incoming gluon g/A 2 t fromthetargetisnotonlylongitudinalbutalsohasanon-zerotransversecomponentofmagnitude k =|p +p | (2.4) t 1t 2t which leads to imbalance of transverse momentum of the produced jets: k2 = |p |2+|p |2+ t 1t 2t 2|p ||p |cos∆φ. ThevaliditydomainofITMDfactorizationis 1t 2t Q (x )(cid:28)P (2.5) s 2 t whereP isthehardscaleoftheprocess,relatedtotheindividualjetmomentaP ∼|p |,|p |. By t t 1t 2t contrast,thevalueofk canbearbitrary. t TheITMDfactorizationformulareads[16] dσpA→dijets+X = αs2 ∑ x1fa/p(x1)∑2 K(i) (P,k )Φ(i) (x ,k ). (2.6) d2Pd2k dy dy (x x s)2 1+δ ag∗→cd t t ag→cd 2 t t t 1 2 1 2 a,c,d cd i=1 (i) ItinvolvesseveralgluonTMDsΦ (2perchannel),withdifferentoperatordefinitions,thatare ag→cd (i) accompaniedbydifferenthardfactorsK . Thosewherecomputedin[16]usingeitherFeyn- ag∗→cd man diagram techniques, or color-ordered amplitude methods. They encompass the improvement overtheTMDfactorizationformuladerivedinRef.[27]wherethematrixelementswereon-shell andafunctionofP only. t WewouldliketopointoutthattheITMDfactorizationformula2.6wasbuildinordertocon- tainboththeHEFandtheTMDexpressionsasitslimitingcases,andassuchshouldbeconsidered no more than an interpolating formula. We note however, that if one would be able to directly derive a factorization formula valid for Q (cid:28)P regardless of the value of k , any additional term s t t comparedto2.6shouldvanishinbothlimitsQ ∼k (cid:28)P andQ (cid:28)k ∼P. s t t s t t 3. Numericalstudiesoftheforwarddi-jetcrosssection We move now to the numerical results1 for forward di-jet production in p+p and p+Pb colli- sionsattheLHC.Weconsideracenter-of-massenergyof8.16TeV,andgenerateallourpredictions 1thecalculationswereperformedusingMonteCarloprograms[28,29] 2 Forwarddi-jet 1.8 ITMD (KS) with S(x), p+p ITMD, d=0.5 ITMD (KS) with S(x), d=0.75, p+Pb ITMD, d=0.75 1.6 100.0 √S = 8.16 TeV √S = 8.16 TeV 1.4 pT1>pT2 > 20 GeV pT1>pT2 > 20 GeV 3.5<y1,y2<4.5 ] 3.5<y1,y2<4.5 1.2 b n [Δφ 10.0 RpA1.0 d / σ d 0.8 1.0 0.6 0.4 0.1 0.2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 Δφ Δφ Figure1: Leftplot: differentialcrosssectionasafunctionoftheazimuthalanglebetweenthejetsforp+p andp+Pbcollisions(rescaledbythenumberofnucleons). Thedistributionsareidenticaleverywhereexpect near∆φ (cid:39)π,wheresaturationarethestrongest. Rightplot: nuclearmodificationfactorsfortwovaluesof thenuclearsaturationscale,providinganuncertaintyband. withtheforwardregiondefinedastherapidityrange3.5<y<4.5ononesideofthedetector. The two hardest jets are required to lie within this region and we also impose a cut on the minimal transverse momentum of each two jets: p =20GeV. In such a setup, the cross section still may t0 be divergent due to collinear singularities. These are cut-off by applying a jet algorithm on the final state momenta with a delta-phi-rapidity cut R = 0.5. Finally, we require the jets to be or- dered according to increasing transverse momentum, that is we have |p |>|p |> p . For the t1 t2 t0 collinearpartondistributionsthatentertheITMDformula,wechosethegeneral-purposeCT10set. For the central value of the factorization and renormalization scale, we choose the average trans- versemomentumofthetwoleadingjets, µ =µ = 1(|p |+|p |). Wewillproduceerrorbands F R 2 t1 t2 corresponding to the renormalization and factorization scale uncertainties by varying the central numbersfromhalftotwicetheirvalue. ForthevariousobservablesO shownbelow,wealsoconsiderthenuclearmodificationfactors definedas dσp+Pb dO R = . (3.1) pPb dσp+p A dO withA=208forPb. Inourapproach, intheabsenceofsaturationeffects, orinthecaseinwhich theyareequallystronginthenucleusandintheproton,thisratioisequaltounity. If,however,the non-linear evolution plays a more important role in the case of the nucleus, the R ratio will be pPb suppressedbelow1. Westartbyinvestigatingtheazimuthalcorrelations,withtheazimuthalanglebetweenthejets ∆φ definedtoliewithin0<∆φ <π. 3 Forwarddi-jet 1.8 1.8 ITMD, d=0.5 ITMD, d=0.5 HEF, d=0.5 HEF, d=0.5 1.6 1.6 √S = 8.16 TeV √S = 8.16 TeV 1.4 pT1>pT2 > 20 GeV 1.4 pT1>pT2 > 20 GeV 3.5<y1,y2<4.5 3.5<y1,y2<4.5 1.2 1.2 A A p1.0 p1.0 R R 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 20.0 25.0 30.0 35.0 40.0 45.0 50.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 pT1 pT2 Figure2: Nuclearmodificationfactorsasafunctionofthetransversemomentumoftheleading(left)and subleading(right)jet,comparingthenewITMDapproachwithpreviouslyobtainedHEFresults. InFig.1wecomparethe∆Φdistributioninp+pandp+Pbcollisions. Afterrescalingthep+Pb crosssectionbythenumberofnucleons,weobtainidenticaldistributionsalmosteverywhere. Itis onlyfornearlyback-to-backjets,around∆φ (cid:39)π,thatsaturationeffectsinduceadifference. This difference is better appreciated on the nuclear modification factor, which goes from unity to 0.6, as ∆φ varies from ∼2.7 to π. Two values of the parameter c have been considered, which makes upanuncertaintybandthatturnsouttoberathersmall. Thismeansthattheuncertaintyrelatedto thevalueofthesaturationscaleoftheleadnucleusdoesnotstronglyinfluencethepredictedR pPb suppression. Finally, in Fig. 2 we display the nuclear modification factors as a function of the transverse momentum of the leading and sub-leading jet. Our conclusions are similar for these observables: thenewITMDpredictionsaresimilartothepreviouslyobtainedHEFresults,duetothefactthatthe ITMD/HEFratioissimilarinp+pandp+Pbcollisions. ThismeansthattheHEFframework,which isincorrectfornearlyback-to-backjets-sinceinthisformalismallthegluonTMDsareconsidered equalregardlessofthekinematics-canneverthelessbesafelyusedforR calculations. pPb 4. Conclusions In this paper, we have studied forward di-jet production in proton-proton and proton-lead collisions, using the small-x improved TMD factorization framework Eq. (2.6. We have obtained thefirstnumericalimplementationofthisformalism,andthefirstpredictionsforforwarddi-jetsat theLHC,aprocesswhichisparticularlyinterestingfromsmall-xpointofview. Ourresultsforthe nuclearmodificationfactorsinp+Pbvsp+pcollisionsconfirmtheconclusionsobtainedin[30]in theHEFframework,thatfornearlyback-to-backjets,nonnegligibleeffectsofgluonsaturationare tobeexpectedasonegoesfromp+ptop+Pbcollisions. 4 Forwarddi-jet Acknowledgements K.KacknowledgessupportbyNarodoweCentrumNaukiwithSonataBisgrantDEC-2013/10/E/ST2/00656. The article is based on paper written with P. Kotko, C. Marquet, E. Petreska, S. Sapeta, A. van Hameren References [1] M.Deak,F.Hautmann,H.JungandK.Kutak,JHEP0909(2009)121 doi:10.1088/1126-6708/2009/09/121[arXiv:0908.0538[hep-ph]]. [2] M.Deak,F.Hautmann,H.JungandK.Kutak,arXiv:0908.1870[hep-ph]. [3] M.Deak,F.Hautmann,H.JungandK.Kutak,arXiv:1012.6037[hep-ph]. [4] M.Deak,F.Hautmann,H.JungandK.Kutak,Eur.Phys.J.C72(2012)1982 doi:10.1140/epjc/s10052-012-1982-5[arXiv:1112.6354[hep-ph]]. [5] M.Deak,F.Hautmann,H.JungandK.Kutak,arXiv:1112.6386[hep-ph]. [6] K.KutakandS.Sapeta,Phys.Rev.D86(2012)094043doi:10.1103/PhysRevD.86.094043 [arXiv:1205.5035[hep-ph]]. [7] C.Marquet,Nucl.Phys.A796(2007)41. [8] L.V.Gribov,E.M.LevinandM.G.Ryskin,Phys.Rept.100(1983)1. [9] J.L.AlbaceteandC.Marquet,Phys.Rev.Lett.105(2010)162301. [10] A.Stasto,B.-W.XiaoandF.Yuan,Phys.Lett.B716(2012)430. [11] T.LappiandH.Mantysaari,Nucl.Phys.A908(2013)51. [12] F.Gelis,E.Iancu,J.Jalilian-MarianandR.Venugopalan,Ann.Rev.Nucl.Part.Sci.60(2010)463. [13] J.L.AlbaceteandC.Marquet,Prog.Part.Nucl.Phys.76(2014)1. [14] A.Adareetal.[PHENIXCollaboration],Phys.Rev.Lett.107(2011)172301. [15] E.Braidot[STARCollaboration],arXiv:1005.2378[hep-ph]. [16] P.Kotko,K.Kutak,C.Marquet,E.Petreska,S.SapetaandA.vanHameren,JHEP1509(2015)106 [17] A.H.Mueller,B.-W.XiaoandF.Yuan,Phys.Rev.Lett.110(2013)082301. [18] A.H.Mueller,B.-W.XiaoandF.Yuan,Phys.Rev.D88(2013)114010. [19] A.vanHameren,P.Kotko,K.KutakandS.Sapeta,Phys.Lett.B737(2014)335. [20] K.Kutak,Phys.Rev.D91(2015)no.3,034021. [21] M.Ciafaloni,Nucl.Phys.B296(1988)49. [22] S.Catani,F.FioraniandG.Marchesini,Nucl.Phys.B336(1990)18. [23] S.Catani,F.FioraniandG.Marchesini,Phys.Lett.B234(1990)339. [24] A.vanHameren,P.Kotko,K.Kutak,C.Marquet,E.PetreskaandS.Sapeta,JHEP1612(2016)034 [25] S.Catani,M.CiafaloniandF.Hautmann,Nucl.Phys.B366(1991)135. 5 Forwarddi-jet [26] R.Angeles-Martinezetal.,ActaPhys.Polon.B46(2015)no.12,2501 doi:10.5506/APhysPolB.46.2501[arXiv:1507.05267[hep-ph]]. [27] F.Dominguez,C.Marquet,B.W.XiaoandF.Yuan,Phys.Rev.D83(2011)105005 doi:10.1103/PhysRevD.83.105005[arXiv:1101.0715[hep-ph]]. [28] A.vanHameren,arXiv:1611.00680[hep-ph]. [29] P.Kotko.LxJet,thecodeisavailableatLxJet.html.http://annapurna.ifj.edu.pl/pkotko/ [30] A.vanHameren,P.Kotko,K.Kutak,C.MarquetandS.Sapeta,Phys.Rev.D89(2014)no.9,094014 doi:10.1103/PhysRevD.89.094014[arXiv:1402.5065[hep-ph]]. 6