ebook img

Production and Fractionation of Antioxidant Peptides from Soy Protein Isolate using PDF

114 Pages·2012·5.41 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Production and Fractionation of Antioxidant Peptides from Soy Protein Isolate using

Production  and  Fractionation  of  Antioxidant   Peptides  from  Soy  Protein  Isolate  using   Sequential  Membrane  Ultrafiltration  and   Nanofiltration     By   Sahan  Ranamukhaarachchi         A  thesis  presented  to  the  University  of  Waterloo   In  fulfillment  of  the   thesis  requirement  for  the  degree  of   Master  of  Applied  Science   In   Chemical  Engineering           Waterloo,  Ontario,  Canada,  2012   ©  Sahan  Ranamukhaarachchi  2012 I  hereby  declare  that  I  am  the  sole  author  of  this  thesis.  This  is  a  true  copy  of  the  thesis,   including  any  required  final  revisions,  as  accepted  by  my  examiners.     I  understand  that  my  thesis  may  be  made  electronically  available  to  the  public.       i  i Abstract   Antioxidants   are   molecules   capable   of   stabilizing   and   preventing   oxidation.   Certain  peptides,  protein  hydrolysates,  have  shown  antioxidant  capacities,  which  are   obtained  once  liberated  from  the  native  protein  structure.  Soy  protein  isolates  (SPI)   were  enzymatically  hydrolyzed  by  pepsin  and  pancreatin  mixtures.  The  soy  protein   hydrolysates   (SPH)   were   fractionated   with   sequential   ultrafiltration   (UF)   and   nanofiltration  (NF)  membrane  steps.  Heat  pre-­‐treatment  of  SPI  at  95  oC  for  5  min  prior   to   enzymatic   hydrolysis   was   investigated   for   its   effect   on   peptide   distribution   and   antioxidant  capacity.  SPH  were  subjected  to  UF  with  a  10  kDa  molecular  weight  cut  off   (MWCO)  polysulfone  membrane.  UF  permeate  fractions  (lower  molecular  weight  than   10  kDa)  were  fractionated  by  NF  with  a  thin  film  composite  membrane  (2.5  kDa  MWCO)   at  pH  4  and  8.  Similar  peptide  content  and  antioxidant  capacity  (α=0.05)  were  obtained   in  control  and  pre-­‐heated  SPH  when  comparing  the  respective  UF  and  NF  permeate  and   retentate   fractions   produced.   FCR   antioxidant   capacities   of   the   SPH   fractions   were   significantly  lower  than  their  ORAC  antioxidant  capacities,  and  the  distribution  among   the  UF  and  NF  fractions  was  generally  different.  Most  UF  and  NF  fractions  displayed   higher  antioxidant  capacities  when  compared  to  the  crude  SPI  hydrolysates,  showing   the  importance  of  molecular  weight  on  antioxidant  capacity  of  peptides.  The  permeate   fractions  produced  by  NF  at  pH  8  displayed  the  highest  antioxidant  capacity,  expressed   in  terms  of  trolox  equivalents  (TE)  per  total  solids  (TS):  5562  μmol  TE  g-­‐1  TS  for  control   SPH,   and   5187   μmol   TE   g-­‐1   TS   for   pre-­‐heated   SPH.   Due   to   the   improvement   in   antioxidant  capacity  of  peptides  by  NF  at  pH  8,  the  potential  for  NF  as  a  viable  industrial   fractionation  process  was  demonstrated.     Principal  component  analysis  (PCA)  of  fluorescence  excitation-­‐emission  matrix   (EEM)   data   for   UF   and   NF   peptide   fractions,   followed   by   multi-­‐linear   regression   analysis,  was  assessed  for  its  potential  to  monitor  and  identify  the  contributions  to   ORAC   and   FCR,   two   in  vitro   antioxidant   capacity   assays,   of   SPH   during   membrane   fractionation.  Two  statistically  significant  principal  components  (PCs)  were  obtained   for   UF   and   NF   peptide   fractions.   Multi-­‐linear   regression   models   (MLRM)   were   developed  to  estimate  their  fluorescence  and  PCA-­‐captured  ORAC  (ORAC )  and  FCR   FPCA (FCR )  antioxidant  capacities.  The  ORAC  and  FCR  antioxidant  capacities  for   FPCA FPCA FPCA NF  samples  displayed  strong,  linear  relationships  at  different  pH  conditions  (R2>0.99).     Such   relationships   are   believed   to   reflect   the   individual   and   relative   combined   ii  i contributions  of  tryptophan  and  tyrosine  residues  present  in  the  SPH  fractions  to  ORAC   and  FCR  antioxidant  capacities.  Therefore,  the  proposed  method  provides  a  tool  for  the   assessment  of  fundamental  parameters  of  antioxidant  capacities  captured  by  ORAC  and   FCR  assays.     iv Acknowledgements   First  of  all,  I  would  like  to  express  my  sincere  gratitude  my  advisor,  Christine   Moresoli  for  accepting  me  as  a  graduate  student  and  providing  the  opportunity  to   conduct  exciting  research.  The  attention,  training,  support,  and  advice  provided  by   Christine  have  tremendously  influenced  my  ability  to  conduct  independent  research,   and  have  been  indispensible  to  the  completion  of  this  thesis.     I  would  like  to  acknowledge  the  National  Science  and  Engineering  Research   Council  of  Canada  for  providing  the  financial  support  to  this  research  project.  I  am  also   thankful  to  the  Department  of  Chemical  Engineering,  and  the  University  of  Waterloo  for   providing  financial  assistances  in  many  ways  during  the  course  of  this  Masters  program.   Ramila  Peiris  has  been  a  mentor  and  has  assisted  this  research  in  many  different   avenues.  I  am  grateful  for  his  guidance  and  presence  for  the  duration  of  my  Masters   program.     Special  recognitions  of  appreciation  are  expressed  to  Raymond  Legge  and  the   wonderful   members   of   the   Legge-­‐Moresoli   research   group.   Andrew   Yeh,   Jamie   Cousineau,  Katharina  Hassel,  Barbara  Guettler,  Nicholas  Ignagni,  Sarah  Meunier,  Rachel   Campbell,   and   Nikhil   Kumar   have   greatly   influenced   my   life   at   the   University   of   Waterloo,  and  I  am  thankful  for  everything.   I  am  thankful  to  the  reviewers  of  my  thesis,  Xianshe  Feng  and  Marc  Aucoin  for   their  time  and  valuable  feedback;  and  to  Robert  Lencki  (University  of  Guelph)  for  his   assistance  and  influence  in  my  decision  to  attend  the  University  of  Waterloo.   I   would   also   like   to   express   my   immense   gratitude   to   Chitral   Angammana,   Suramya   Mihindukulasuriya,   Nandana   Jayabahu,   Ishari   Jayabahu,   and   Subodha   Gunawardena  for  all  the  care  and  comfort  provided  during  the  past  six  years.     The  constant  presence,  words  of  encouragement  and  incomparable  attention   from  my  family  have  propelled  me  to  excel  at  my  studies  and  to  become  the  person  I  am   today.  I  am  forever  in  debt  to  Senaratne  and  Sandya  Ranamukhaarachchi  (my  beautiful   parents),  and  Himesha  and  Sithumini  Ranamukhaarachchi  (my  two  wonderful  sisters),   without  whom  I  definitely  would  not  be  here  today.  I  am  also  extremely  thankful  to  Lal,   Samanthi,  and  Ayumi  Samarakoon.     Finally,  I  express  my  deepest  appreciation  to  Mayumi  Samarakoon  for  sharing   every  second  of  my  life  in  Waterloo.       v Table  of  Contents   List  of  Figures                                                                                                                                                                                                                                                                                    x   List  of  Tables                                                                                                                                                                                                                                                                                  xii   List  of  Abbreviations                                                                                                                                                                                                                                                xiii   1.   Introduction  ______________________________________________________________________________  1   1.1.   Research  Motivation  ________________________________________________________________________  1   1.2.   Project  Objectives  ___________________________________________________________________________  2   1.2.1.   Goals  .............................................................................................................................................................  2   1.2.2.   Hypotheses  ................................................................................................................................................  2   1.2.3.   Objectives  ...................................................................................................................................................  3   1.3.   Thesis  Organization  _________________________________________________________________________  3   2.   Theoretical  Knowledge  and  Principles  ______________________________________________  5   2.1.   Proteins  _______________________________________________________________________________________  5   2.1.1.   Soybeans  and  soy  proteins  .................................................................................................................  5   2.1.1.1.   Soy  proteins  in  foods  __________________________________________________________________________  6   2.1.1.2.   Characteristics  of  soy  proteins  _______________________________________________________________  7   2.2.   Peptides  _______________________________________________________________________________________  7   2.2.1.   Production  of  peptides  .........................................................................................................................  8   2.2.1.1.   Enzymatic  hydrolysis  _________________________________________________________________________  9   2.2.1.2.   Microbial  fermentation  ______________________________________________________________________  11   2.2.2.   Peptide  and  amino  acid  analysis  techniques  ............................................................................  11   2.2.2.1.   Reverse-­‐phase  high  performance  liquid  chromatography  ________________________________  12   2.2.2.2.   Nuclear  magnetic  resonance  spectroscopy  ________________________________________________  13   2.3.   Antioxidants  ________________________________________________________________________________  14   2.3.1.   In  vitro  antioxidant  assays  ................................................................................................................  15   2.3.2.   Differences  between  in  vitro  versus  in  vivo  antioxidant  assays  .......................................  17   2.3.3.   Antioxidant  soy  peptides  ...................................................................................................................  17   2.4.   Membrane  Filtration  ______________________________________________________________________  19   2.4.1.   Membrane  fouling  ................................................................................................................................  20   2.4.2.   Ultrafiltration  .........................................................................................................................................  22   2.4.3.   Nanofiltration  .........................................................................................................................................  22   2.4.4.   Selection  of  operating  parameters  ................................................................................................  25   2.5.   Fluorescence  Spectroscopy  ______________________________________________________________  25   2.5.1.   Principal  Component  Analysis  ........................................................................................................  26   v  i 3.   Production  and  Fractionation  of  Antioxidant  Peptide  Fractions  from  Soy   Protein  Isolate  using  Ultrafiltration  and  Nanofiltration  _________________________  27   3.2.   Abstract  _____________________________________________________________________________________  28   3.3.   Introduction  ________________________________________________________________________________  29   3.4.   Materials  and  Methods  ____________________________________________________________________  31   3.4.1.   Preparation  of  soy  protein  hydrolysates  ....................................................................................  31   3.4.1.1.   SPI  solution  ___________________________________________________________________________________  31   3.4.1.2.   Enzymatic  hydrolysis  of  SPI  solutions  ______________________________________________________  31   3.4.1.3.   Ultracentrifugation  ___________________________________________________________________________  31   3.4.2.   Filtration  experiments  ........................................................................................................................  32   3.4.2.1.   Ultrafiltration  experiments  __________________________________________________________________  32   3.4.2.2.   Nanofiltration  experiments  _________________________________________________________________  33   3.4.3.   Analytical  methods  ..............................................................................................................................  34   3.4.3.1.   Total  solids  determination  __________________________________________________________________  34   3.4.3.2.   O’phthaldialdehyde  (OPA)  assay  ____________________________________________________________  34   3.4.3.3.   Oxygen  Radical  Absorbance  Capacity  (ORAC)  assay  ______________________________________  34   3.4.3.4.   Folin  Ciocalteau  Reagent  (FCR)  assay  ______________________________________________________  35   3.4.4.   Statistical  analysis  ................................................................................................................................  36   3.5.   Results  and  Discussion  ____________________________________________________________________  36   3.5.1.   Effect  of  temperature  on  peptide  yield  during  enzymatic  hydrolysis  ...........................  36   3.5.2.   Ultrafiltration  of  hydrolysates  ........................................................................................................  37   3.5.2.1.   Effect  of  SPI  heat  pre-­‐treatment  on  total  solids  distribution  _____________________________  37   3.5.2.2.   Effect  of  SPI  heat  pre-­‐treatment  on  total  peptide  distribution  ___________________________  38   3.5.2.3.   Effect  of  ultrafiltration  on  antioxidant  capacity  ___________________________________________  39   3.5.3.   Nanofiltration  of  hydrolysates  ........................................................................................................  41   3.5.3.1.   Effect  of  SPI  heat  pre-­‐treatment  and  pH  on  total  solids  distribution  ____________________  41   3.5.3.2.   Effects  of  SPI  heat  pre-­‐treatment  and  pH  on  total  peptide  distribution  _________________  42   3.5.3.3.   Effect  of  nanofiltration  on  antioxidant  capacity  ___________________________________________  44   3.5.4.   Potential  for  SPI  hydrolysates  as  a  source  of  antioxidants  .................................................  45   3.6.   Conclusion  __________________________________________________________________________________  47   4.   Assessment  of  the  Contribution  of  Biological  Species  to  Antioxidant  Capacity   of  Ultrafiltration  and  Nanofiltration-­‐derived  Soy  Protein  Hydrolysate  using   Fluorescence  Spectroscopy  and  Principal  Component  Analysis.  _______________  49   4.2.   Abstract  _____________________________________________________________________________________  50   4.3.   Introduction  ________________________________________________________________________________  51   4.4.   Materials  and  Methods  ____________________________________________________________________  53   4.4.1.   Preparation  of  soy  protein  hydrolysates  ....................................................................................  53   vi  i 4.4.1.1.   Enzymatic  hydrolysis  of  SPI  solutions  ______________________________________________________  53   4.4.2.   Filtration  experiments  ........................................................................................................................  53   4.4.2.1.   Ultrafiltration  experiments  __________________________________________________________________  53   4.4.2.2.   Nanofiltration  experiments  _________________________________________________________________  54   4.4.3.   Analytical  methods  ..............................................................................................................................  54   4.4.3.1.   Total  solids  (TS)  determination  _____________________________________________________________  54   4.4.3.2.   O’phthaldialdehyde  (OPA)  assay  ____________________________________________________________  55   4.4.3.3.   Oxygen  Radical  Absorbance  Capacity  (ORAC)  assay  ______________________________________  55   4.4.3.4.   Folin  Ciocalteau  Reagent  (FCR)  assay  ______________________________________________________  55   4.4.4.   Fluorescence  analysis  .........................................................................................................................  56   4.4.4.1.   Principal  Component  Analysis  ______________________________________________________________  56   4.4.5.   Multi-­‐linear  regression  analysis  .....................................................................................................  57   4.4.6.   Statistical  analysis  ................................................................................................................................  58   4.5.   Results  and  Discussion  ____________________________________________________________________  58   4.5.1.   Effects  of  UF  and  NF  on  peptide  distribution  and  antioxidant  capacity  .......................  58   4.5.2.   Fluorescence  EEMs  for  UF  and  NF  peptide  fractions  ............................................................  59   4.5.3.   Fluorescence  loading  plots  for  NF  peptide  fractions  ............................................................  60   4.5.4.   Fluorescence  and  PCA-­‐captured  relative  ORAC  and  FCR  antioxidant  capacities   during  fractionation  of  SPH  by  NF  ................................................................................................  61   4.5.5.   Correlation  between  FCR  and  ORAC  measurements  ............................................................  63   4.5.6.   Verification  of  results  by  PCA  of  UF  samples  ............................................................................  64   4.5.7.   Potential  for  analysis  of  bioactive  compounds  and  future  applications  .......................  65   4.6.   Conclusion  __________________________________________________________________________________  66   5.   Amino  Acid  Analysis  of  Antioxidant  Soy  Protein  Hydrolysate  Fractions   Separated  by  UF  and  NF  _______________________________________________________________  68   5.1.   Introduction  ________________________________________________________________________________  68   5.2.   Materials  and  Methods  ____________________________________________________________________  69   5.2.1.   Enzymatic  hydrolysis  of  peptide  fractions  ................................................................................  69   5.2.2.   Analytical  methods  ..............................................................................................................................  69   5.2.2.1.   Total  solids  determination  __________________________________________________________________  69   5.2.2.2.   Reverse-­‐phase  HPLC  _________________________________________________________________________  69   5.2.2.3.   1H  NMR  Spectroscopy  ________________________________________________________________________  70   5.3.   Results  and  Discussion  ____________________________________________________________________  71   5.3.1.   Amino  acid  analysis  by  reverse-­‐phase  HPLC  ............................................................................  71   5.3.2.   Amino  acid  analysis  by  1H-­‐NMR  spectroscopy  ........................................................................  74   vi  ii 5.3.3.   Potential  of  reverse-­‐phase  HPLC  and  NMR  for  amino  acid  analysis  of  soy   hydrolysate  fractions  .........................................................................................................................  75   5.3.4.   Future  work  ............................................................................................................................................  77   5.4.   Conclusion  __________________________________________________________________________________  77   6.   Conclusions  ______________________________________________________________________________  78   7.   References  _______________________________________________________________________________  81   8.   Appendix  _________________________________________________________________________________  86   8.1.   Peptide  Concentrations  of  UF  and  NF  Samples  ________________________________________  86   8.2.   Total  Material  Balances  for  UF  and  NF  Experiments  _________________________________  86   8.3.   Permeate  Flux  Analysis  ___________________________________________________________________  90   8.3.1.   Sample  Calculations:  ...........................................................................................................................  94   8.3.1.1.   Normalized  flux  estimation:  _________________________________________________________________  94   8.3.1.2.   Total  resistance  (R )  estimation:  __________________________________________________________  94   tot 8.4.   Fluorescence  analysis  and  PCA  __________________________________________________________  95   8.4.1.   Flow  chart  of  process  ..........................................................................................................................  95   8.4.2.   Enhancement  of  antioxidant  capacity  during  peptide  fractionation  .............................  95   8.4.3.   PCA  of  NF  and  UF  data  sets  ...............................................................................................................  96   8.4.4.   Linear  regression  models  ..................................................................................................................  97   8.4.5.   Residual  Plots  .........................................................................................................................................  99     ix List  of  Figures   Figure  1:  Mechanism  of  OPA  assay  to  detect  free  amino  acids  and  peptides  _____________  9   Figure  2:  Possible  fluorescein  oxidation  pathway  induced  by  AAPH  _____________________  16   Figure  3:  Mechanism  of  FCR  assay  to  measure  antioxidant  capacity  _____________________  16   Figure  4:  Model  for  mass  transfer  through  a  NF  membrane  ______________________________  21   Figure  5:  Components  and  configuration  of  a  lab  scale  UF  system  _______________________  22   Figure  6:  Components  and  configuration  of  a  lab  scale  NF  system  _______________________  23   Figure   7:   Progress   of   enzymatic   hydrolysis   of   control   and   pre-­‐heated   soy   protein   hydrolysates  assessed  by  OPA  ____________________________________________________  36   Figure  8:  A  comparison  of  peptide  content  estimated  by  OPA  of  UF  fractions  from   control  and  pre-­‐heated  soy  protein  hydrolysate  ________________________________  38   Figure  9:  A  comparison  of  the  antioxidant  capacity  estimated  by  ORAC  of  UF  fractions   from  control  and  pre-­‐heated  soy  protein  hydrolysate  __________________________  39   Figure  10:  A  comparison  of  the  antioxidant  capacity  estimated  by  FCR  of  UF  fractions   from  control  and  pre-­‐heated  soy  protein  hydrolysate  __________________________  40   Figure  11:  A  comparison  of  peptide  content  estimated  by  OPA  of  NF  fractions  from   control  and  pre-­‐heated  soy  protein  hydrolysate  at  pH  4  and  8  ________________  42   Figure  12:  A  comparison  of  the  antioxidant  capacity  estimated  by  ORAC  of  NF  fractions   from  control  and  pre-­‐heated  soy  protein  hydrolysate  at  pH  4  and  8  __________  44   Figure  13:  A  comparison  of  the  antioxidant  capacity  estimated  by  FCR  of  NF  fractions   from  control  and  pre-­‐heated  soy  protein  hydrolysate  at  pH  4  and  8  __________  45   Figure  14:  Plot  of  observed  ORAC  versus  observed  FCR  antioxidant  capacities  for  96  NF   samples  for  heat  pre-­‐treated  soy  protein  hydrolysate  at  pH  4  and  8  __________  59   Figure  15:  Plots  of  observed  ORAC  versus  observed  FCR  antioxidant  capacities  for  UF   and  NF  samples  ____________________________________________________________________  59   Figure   16:   Fluorescence   features   observed   in   typical   fluorescence   EEMs   for   UF   permeate  and  NF  permeate  at  pH  8  for  pre-­‐heated  soy  protein  hydrolysate  _  60   Figure  17:  3D  illustrations  of  loading  matrices  obtained  by  PCA  of  NF  spectral  data  for   PC  and  PC  _________________________________________________________________________  61   1 2 Figure  18:  Plot  of  ORAC  versus  FCR  antioxidant  capacity  for  96  NF  samples  for   FPCA FPCA heat  pre-­‐treated  soy  protein  hydrolysate  at  pH  4  and  8  ________________________  63   x

Description:
of Ultrafiltration and Nanofiltration-‐derived Soy Protein Hydrolysate using Effects of UF and NF on peptide distribution and antioxidant capacity .
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.