Production and Fractionation of Antioxidant Peptides from Soy Protein Isolate using Sequential Membrane Ultrafiltration and Nanofiltration By Sahan Ranamukhaarachchi A thesis presented to the University of Waterloo In fulfillment of the thesis requirement for the degree of Master of Applied Science In Chemical Engineering Waterloo, Ontario, Canada, 2012 © Sahan Ranamukhaarachchi 2012 I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. i i Abstract Antioxidants are molecules capable of stabilizing and preventing oxidation. Certain peptides, protein hydrolysates, have shown antioxidant capacities, which are obtained once liberated from the native protein structure. Soy protein isolates (SPI) were enzymatically hydrolyzed by pepsin and pancreatin mixtures. The soy protein hydrolysates (SPH) were fractionated with sequential ultrafiltration (UF) and nanofiltration (NF) membrane steps. Heat pre-‐treatment of SPI at 95 oC for 5 min prior to enzymatic hydrolysis was investigated for its effect on peptide distribution and antioxidant capacity. SPH were subjected to UF with a 10 kDa molecular weight cut off (MWCO) polysulfone membrane. UF permeate fractions (lower molecular weight than 10 kDa) were fractionated by NF with a thin film composite membrane (2.5 kDa MWCO) at pH 4 and 8. Similar peptide content and antioxidant capacity (α=0.05) were obtained in control and pre-‐heated SPH when comparing the respective UF and NF permeate and retentate fractions produced. FCR antioxidant capacities of the SPH fractions were significantly lower than their ORAC antioxidant capacities, and the distribution among the UF and NF fractions was generally different. Most UF and NF fractions displayed higher antioxidant capacities when compared to the crude SPI hydrolysates, showing the importance of molecular weight on antioxidant capacity of peptides. The permeate fractions produced by NF at pH 8 displayed the highest antioxidant capacity, expressed in terms of trolox equivalents (TE) per total solids (TS): 5562 μmol TE g-‐1 TS for control SPH, and 5187 μmol TE g-‐1 TS for pre-‐heated SPH. Due to the improvement in antioxidant capacity of peptides by NF at pH 8, the potential for NF as a viable industrial fractionation process was demonstrated. Principal component analysis (PCA) of fluorescence excitation-‐emission matrix (EEM) data for UF and NF peptide fractions, followed by multi-‐linear regression analysis, was assessed for its potential to monitor and identify the contributions to ORAC and FCR, two in vitro antioxidant capacity assays, of SPH during membrane fractionation. Two statistically significant principal components (PCs) were obtained for UF and NF peptide fractions. Multi-‐linear regression models (MLRM) were developed to estimate their fluorescence and PCA-‐captured ORAC (ORAC ) and FCR FPCA (FCR ) antioxidant capacities. The ORAC and FCR antioxidant capacities for FPCA FPCA FPCA NF samples displayed strong, linear relationships at different pH conditions (R2>0.99). Such relationships are believed to reflect the individual and relative combined ii i contributions of tryptophan and tyrosine residues present in the SPH fractions to ORAC and FCR antioxidant capacities. Therefore, the proposed method provides a tool for the assessment of fundamental parameters of antioxidant capacities captured by ORAC and FCR assays. iv Acknowledgements First of all, I would like to express my sincere gratitude my advisor, Christine Moresoli for accepting me as a graduate student and providing the opportunity to conduct exciting research. The attention, training, support, and advice provided by Christine have tremendously influenced my ability to conduct independent research, and have been indispensible to the completion of this thesis. I would like to acknowledge the National Science and Engineering Research Council of Canada for providing the financial support to this research project. I am also thankful to the Department of Chemical Engineering, and the University of Waterloo for providing financial assistances in many ways during the course of this Masters program. Ramila Peiris has been a mentor and has assisted this research in many different avenues. I am grateful for his guidance and presence for the duration of my Masters program. Special recognitions of appreciation are expressed to Raymond Legge and the wonderful members of the Legge-‐Moresoli research group. Andrew Yeh, Jamie Cousineau, Katharina Hassel, Barbara Guettler, Nicholas Ignagni, Sarah Meunier, Rachel Campbell, and Nikhil Kumar have greatly influenced my life at the University of Waterloo, and I am thankful for everything. I am thankful to the reviewers of my thesis, Xianshe Feng and Marc Aucoin for their time and valuable feedback; and to Robert Lencki (University of Guelph) for his assistance and influence in my decision to attend the University of Waterloo. I would also like to express my immense gratitude to Chitral Angammana, Suramya Mihindukulasuriya, Nandana Jayabahu, Ishari Jayabahu, and Subodha Gunawardena for all the care and comfort provided during the past six years. The constant presence, words of encouragement and incomparable attention from my family have propelled me to excel at my studies and to become the person I am today. I am forever in debt to Senaratne and Sandya Ranamukhaarachchi (my beautiful parents), and Himesha and Sithumini Ranamukhaarachchi (my two wonderful sisters), without whom I definitely would not be here today. I am also extremely thankful to Lal, Samanthi, and Ayumi Samarakoon. Finally, I express my deepest appreciation to Mayumi Samarakoon for sharing every second of my life in Waterloo. v Table of Contents List of Figures x List of Tables xii List of Abbreviations xiii 1. Introduction ______________________________________________________________________________ 1 1.1. Research Motivation ________________________________________________________________________ 1 1.2. Project Objectives ___________________________________________________________________________ 2 1.2.1. Goals ............................................................................................................................................................. 2 1.2.2. Hypotheses ................................................................................................................................................ 2 1.2.3. Objectives ................................................................................................................................................... 3 1.3. Thesis Organization _________________________________________________________________________ 3 2. Theoretical Knowledge and Principles ______________________________________________ 5 2.1. Proteins _______________________________________________________________________________________ 5 2.1.1. Soybeans and soy proteins ................................................................................................................. 5 2.1.1.1. Soy proteins in foods __________________________________________________________________________ 6 2.1.1.2. Characteristics of soy proteins _______________________________________________________________ 7 2.2. Peptides _______________________________________________________________________________________ 7 2.2.1. Production of peptides ......................................................................................................................... 8 2.2.1.1. Enzymatic hydrolysis _________________________________________________________________________ 9 2.2.1.2. Microbial fermentation ______________________________________________________________________ 11 2.2.2. Peptide and amino acid analysis techniques ............................................................................ 11 2.2.2.1. Reverse-‐phase high performance liquid chromatography ________________________________ 12 2.2.2.2. Nuclear magnetic resonance spectroscopy ________________________________________________ 13 2.3. Antioxidants ________________________________________________________________________________ 14 2.3.1. In vitro antioxidant assays ................................................................................................................ 15 2.3.2. Differences between in vitro versus in vivo antioxidant assays ....................................... 17 2.3.3. Antioxidant soy peptides ................................................................................................................... 17 2.4. Membrane Filtration ______________________________________________________________________ 19 2.4.1. Membrane fouling ................................................................................................................................ 20 2.4.2. Ultrafiltration ......................................................................................................................................... 22 2.4.3. Nanofiltration ......................................................................................................................................... 22 2.4.4. Selection of operating parameters ................................................................................................ 25 2.5. Fluorescence Spectroscopy ______________________________________________________________ 25 2.5.1. Principal Component Analysis ........................................................................................................ 26 v i 3. Production and Fractionation of Antioxidant Peptide Fractions from Soy Protein Isolate using Ultrafiltration and Nanofiltration _________________________ 27 3.2. Abstract _____________________________________________________________________________________ 28 3.3. Introduction ________________________________________________________________________________ 29 3.4. Materials and Methods ____________________________________________________________________ 31 3.4.1. Preparation of soy protein hydrolysates .................................................................................... 31 3.4.1.1. SPI solution ___________________________________________________________________________________ 31 3.4.1.2. Enzymatic hydrolysis of SPI solutions ______________________________________________________ 31 3.4.1.3. Ultracentrifugation ___________________________________________________________________________ 31 3.4.2. Filtration experiments ........................................................................................................................ 32 3.4.2.1. Ultrafiltration experiments __________________________________________________________________ 32 3.4.2.2. Nanofiltration experiments _________________________________________________________________ 33 3.4.3. Analytical methods .............................................................................................................................. 34 3.4.3.1. Total solids determination __________________________________________________________________ 34 3.4.3.2. O’phthaldialdehyde (OPA) assay ____________________________________________________________ 34 3.4.3.3. Oxygen Radical Absorbance Capacity (ORAC) assay ______________________________________ 34 3.4.3.4. Folin Ciocalteau Reagent (FCR) assay ______________________________________________________ 35 3.4.4. Statistical analysis ................................................................................................................................ 36 3.5. Results and Discussion ____________________________________________________________________ 36 3.5.1. Effect of temperature on peptide yield during enzymatic hydrolysis ........................... 36 3.5.2. Ultrafiltration of hydrolysates ........................................................................................................ 37 3.5.2.1. Effect of SPI heat pre-‐treatment on total solids distribution _____________________________ 37 3.5.2.2. Effect of SPI heat pre-‐treatment on total peptide distribution ___________________________ 38 3.5.2.3. Effect of ultrafiltration on antioxidant capacity ___________________________________________ 39 3.5.3. Nanofiltration of hydrolysates ........................................................................................................ 41 3.5.3.1. Effect of SPI heat pre-‐treatment and pH on total solids distribution ____________________ 41 3.5.3.2. Effects of SPI heat pre-‐treatment and pH on total peptide distribution _________________ 42 3.5.3.3. Effect of nanofiltration on antioxidant capacity ___________________________________________ 44 3.5.4. Potential for SPI hydrolysates as a source of antioxidants ................................................. 45 3.6. Conclusion __________________________________________________________________________________ 47 4. Assessment of the Contribution of Biological Species to Antioxidant Capacity of Ultrafiltration and Nanofiltration-‐derived Soy Protein Hydrolysate using Fluorescence Spectroscopy and Principal Component Analysis. _______________ 49 4.2. Abstract _____________________________________________________________________________________ 50 4.3. Introduction ________________________________________________________________________________ 51 4.4. Materials and Methods ____________________________________________________________________ 53 4.4.1. Preparation of soy protein hydrolysates .................................................................................... 53 vi i 4.4.1.1. Enzymatic hydrolysis of SPI solutions ______________________________________________________ 53 4.4.2. Filtration experiments ........................................................................................................................ 53 4.4.2.1. Ultrafiltration experiments __________________________________________________________________ 53 4.4.2.2. Nanofiltration experiments _________________________________________________________________ 54 4.4.3. Analytical methods .............................................................................................................................. 54 4.4.3.1. Total solids (TS) determination _____________________________________________________________ 54 4.4.3.2. O’phthaldialdehyde (OPA) assay ____________________________________________________________ 55 4.4.3.3. Oxygen Radical Absorbance Capacity (ORAC) assay ______________________________________ 55 4.4.3.4. Folin Ciocalteau Reagent (FCR) assay ______________________________________________________ 55 4.4.4. Fluorescence analysis ......................................................................................................................... 56 4.4.4.1. Principal Component Analysis ______________________________________________________________ 56 4.4.5. Multi-‐linear regression analysis ..................................................................................................... 57 4.4.6. Statistical analysis ................................................................................................................................ 58 4.5. Results and Discussion ____________________________________________________________________ 58 4.5.1. Effects of UF and NF on peptide distribution and antioxidant capacity ....................... 58 4.5.2. Fluorescence EEMs for UF and NF peptide fractions ............................................................ 59 4.5.3. Fluorescence loading plots for NF peptide fractions ............................................................ 60 4.5.4. Fluorescence and PCA-‐captured relative ORAC and FCR antioxidant capacities during fractionation of SPH by NF ................................................................................................ 61 4.5.5. Correlation between FCR and ORAC measurements ............................................................ 63 4.5.6. Verification of results by PCA of UF samples ............................................................................ 64 4.5.7. Potential for analysis of bioactive compounds and future applications ....................... 65 4.6. Conclusion __________________________________________________________________________________ 66 5. Amino Acid Analysis of Antioxidant Soy Protein Hydrolysate Fractions Separated by UF and NF _______________________________________________________________ 68 5.1. Introduction ________________________________________________________________________________ 68 5.2. Materials and Methods ____________________________________________________________________ 69 5.2.1. Enzymatic hydrolysis of peptide fractions ................................................................................ 69 5.2.2. Analytical methods .............................................................................................................................. 69 5.2.2.1. Total solids determination __________________________________________________________________ 69 5.2.2.2. Reverse-‐phase HPLC _________________________________________________________________________ 69 5.2.2.3. 1H NMR Spectroscopy ________________________________________________________________________ 70 5.3. Results and Discussion ____________________________________________________________________ 71 5.3.1. Amino acid analysis by reverse-‐phase HPLC ............................................................................ 71 5.3.2. Amino acid analysis by 1H-‐NMR spectroscopy ........................................................................ 74 vi ii 5.3.3. Potential of reverse-‐phase HPLC and NMR for amino acid analysis of soy hydrolysate fractions ......................................................................................................................... 75 5.3.4. Future work ............................................................................................................................................ 77 5.4. Conclusion __________________________________________________________________________________ 77 6. Conclusions ______________________________________________________________________________ 78 7. References _______________________________________________________________________________ 81 8. Appendix _________________________________________________________________________________ 86 8.1. Peptide Concentrations of UF and NF Samples ________________________________________ 86 8.2. Total Material Balances for UF and NF Experiments _________________________________ 86 8.3. Permeate Flux Analysis ___________________________________________________________________ 90 8.3.1. Sample Calculations: ........................................................................................................................... 94 8.3.1.1. Normalized flux estimation: _________________________________________________________________ 94 8.3.1.2. Total resistance (R ) estimation: __________________________________________________________ 94 tot 8.4. Fluorescence analysis and PCA __________________________________________________________ 95 8.4.1. Flow chart of process .......................................................................................................................... 95 8.4.2. Enhancement of antioxidant capacity during peptide fractionation ............................. 95 8.4.3. PCA of NF and UF data sets ............................................................................................................... 96 8.4.4. Linear regression models .................................................................................................................. 97 8.4.5. Residual Plots ......................................................................................................................................... 99 ix List of Figures Figure 1: Mechanism of OPA assay to detect free amino acids and peptides _____________ 9 Figure 2: Possible fluorescein oxidation pathway induced by AAPH _____________________ 16 Figure 3: Mechanism of FCR assay to measure antioxidant capacity _____________________ 16 Figure 4: Model for mass transfer through a NF membrane ______________________________ 21 Figure 5: Components and configuration of a lab scale UF system _______________________ 22 Figure 6: Components and configuration of a lab scale NF system _______________________ 23 Figure 7: Progress of enzymatic hydrolysis of control and pre-‐heated soy protein hydrolysates assessed by OPA ____________________________________________________ 36 Figure 8: A comparison of peptide content estimated by OPA of UF fractions from control and pre-‐heated soy protein hydrolysate ________________________________ 38 Figure 9: A comparison of the antioxidant capacity estimated by ORAC of UF fractions from control and pre-‐heated soy protein hydrolysate __________________________ 39 Figure 10: A comparison of the antioxidant capacity estimated by FCR of UF fractions from control and pre-‐heated soy protein hydrolysate __________________________ 40 Figure 11: A comparison of peptide content estimated by OPA of NF fractions from control and pre-‐heated soy protein hydrolysate at pH 4 and 8 ________________ 42 Figure 12: A comparison of the antioxidant capacity estimated by ORAC of NF fractions from control and pre-‐heated soy protein hydrolysate at pH 4 and 8 __________ 44 Figure 13: A comparison of the antioxidant capacity estimated by FCR of NF fractions from control and pre-‐heated soy protein hydrolysate at pH 4 and 8 __________ 45 Figure 14: Plot of observed ORAC versus observed FCR antioxidant capacities for 96 NF samples for heat pre-‐treated soy protein hydrolysate at pH 4 and 8 __________ 59 Figure 15: Plots of observed ORAC versus observed FCR antioxidant capacities for UF and NF samples ____________________________________________________________________ 59 Figure 16: Fluorescence features observed in typical fluorescence EEMs for UF permeate and NF permeate at pH 8 for pre-‐heated soy protein hydrolysate _ 60 Figure 17: 3D illustrations of loading matrices obtained by PCA of NF spectral data for PC and PC _________________________________________________________________________ 61 1 2 Figure 18: Plot of ORAC versus FCR antioxidant capacity for 96 NF samples for FPCA FPCA heat pre-‐treated soy protein hydrolysate at pH 4 and 8 ________________________ 63 x
Description: