ebook img

Process-Structure-Properties in Polymer Additive Manufacturing II PDF

180 Pages·2022·15.61 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Process-Structure-Properties in Polymer Additive Manufacturing II

Process–Structure– Properties in Polymer Additive Manufacturing II Edited by Swee Leong Sing and Wai Yee Yeong Printed Edition of the Special Issue Published in Polymers www.mdpi.com/journal/polymers Process–Structure–Properties in Polymer Additive Manufacturing II Process–Structure–Properties in Polymer Additive Manufacturing II Editors Swee Leong Sing Wai Yee Yeong (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) MDPI Basel Beijing Wuhan Barcelona Belgrade Manchester Tokyo Cluj Tianjin Editors SweeLeongSing WaiYeeYeong DepartmentofMechanical SingaporeCentrefor3D Engineering Printing,Schoolof NationalUniversityof MechanicalandAerospace Singapore Engineering Singapore NanyangTechnological Singapore University Singapore Singapore EditorialOffice MDPI St. Alban-Anlage66 4052Basel,Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Polymers(ISSN2073-4360) (availableat:www.mdpi.com/journal/polymers/special issues/process structure polym additive manufacturing II). For citation purposes, cite each article independently as indicated on the article page online and as indicatedbelow: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number, PageRange. ISBN978-3-0365-4484-7(Hbk) ISBN978-3-0365-4483-0(PDF) © 2022 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon publishedarticles,aslongastheauthorandpublisherareproperlycredited,whichensuresmaximum disseminationandawiderimpactofourpublications. ThebookasawholeisdistributedbyMDPIunderthetermsandconditionsoftheCreativeCommons licenseCCBY-NC-ND. Contents AbouttheEditors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii SweeLeongSingandWaiYeeYeong Recent Progress in Research of Additive Manufacturing forPolymers Reprintedfrom: Polymers2022,14,2267,doi:10.3390/polym14112267 . . . . . . . . . . . . . . . . 1 OrhanGu¨lcan,KadirGu¨naydınandAykutTamer TheStateoftheArtofMaterialJetting—ACriticalReview Reprintedfrom: Polymers2021,13,2829,doi:10.3390/polym13162829 . . . . . . . . . . . . . . . . 3 BalakrishnanNagarajan, YingnanWang, MaryamTaheri, SimonTrudel, StevenBryantand AhmedJawadQureshietal. DevelopmentandCharacterizationofFieldStructuredMagneticComposites Reprintedfrom: Polymers2021,13,2843,doi:10.3390/polym13172843 . . . . . . . . . . . . . . . . 23 ChanglangWu,TruongThoDoandPhuongTran Mechanical Properties of PolyJet 3D-Printed Composites Inspired by Space-Filling Peano Curves Reprintedfrom: Polymers2021,13,3516,doi:10.3390/polym13203516 . . . . . . . . . . . . . . . . 39 RazvanUdroiu New Methodology for Evaluating Surface Quality of Experimental Aerodynamic Models ManufacturedbyPolymerJettingAdditiveManufacturing Reprintedfrom: Polymers2022,14,371,doi:10.3390/polym14030371 . . . . . . . . . . . . . . . . . 61 AsmakAbdulSamat,ZuratulAinAbdulHamid,MariattiJaafarandBadrulHishamYahaya Mechanical Properties and In Vitro Evaluation of Thermoplastic Polyurethane and Polylactic AcidBlendforFabricationof3DFilamentsforTrachealTissueEngineering Reprintedfrom: Polymers2021,13,3087,doi:10.3390/polym13183087 . . . . . . . . . . . . . . . . 81 ZihuiZhang,FengtaiHe,BoWang,YipingZhao,ZhiyongWeiandHaoZhangetal. BiodegradablePGA/PBATBlendsfor3DPrinting:MaterialPerformanceandPeriodicMinimal SurfaceStructures Reprintedfrom: Polymers2021,13,3757,doi:10.3390/polym13213757 . . . . . . . . . . . . . . . . 97 Dorin-IoanCatana,Mihai-AlinPopandDenisa-IuliaBrus ComparisonbetweenTestsandSimulationsRegardingBendingResistanceof3DPrintedPLA Structures Reprintedfrom: Polymers2021,13,4371,doi:10.3390/polym13244371 . . . . . . . . . . . . . . . . 111 FengzeJiangandDietmarDrummer Analysis of UV Curing Strategy on Reaction Heat Control and Part Accuracy for Additive Manufacturing Reprintedfrom: Polymers2022,14,759,doi:10.3390/polym14040759 . . . . . . . . . . . . . . . . . 123 Yanis Abdelhamid Gueche, Noelia M. Sanchez-Ballester, Bernard Bataille, Adrien Aubert, Jean-ChristopheRossiandIanSoulairol InvestigatingthePotentialPlasticizingEffectofDi-CarboxylicAcidsfortheManufacturingof SolidOralFormswithCopovidoneandIbuprofenbySelectiveLaserSintering Reprintedfrom: Polymers2021,13,3282,doi:10.3390/polym13193282 . . . . . . . . . . . . . . . . 135 v SamuelSchlicht,SandraGreinerandDietmarDrummer Low Temperature Powder Bed Fusion of Polymers by Means of Fractal Quasi-Simultaneous ExposureStrategies Reprintedfrom: Polymers2022,14,1428,doi:10.3390/polym14071428 . . . . . . . . . . . . . . . . 155 vi About the Editors SweeLeongSing Swee Leong Sing is an Assistant Professor in the Department of Mechanical Engineering, NationalUniversityofSingapore(NUS).PriortojoiningNUSinAugust2021,hewasaPresidential Postdoctoral Fellow at the Singapore Centre for 3D Printing (SC3DP) and School of Mechanical andAerospaceEngineering(MAE),NanyangTechnologicalUniversity(NTU),Singaporeafterbeing awardedtheprestigiousfellowshipin2020. Swee Leong has been active in the 3D printing field for more than 8 years. He obtained his BEng (Hons) in Aerospace Engineering and PhD in Mechanical Engineering with a topic in additivemanufacturing(AM)in2012and2016,respectively. SweeLeong’sresearchfocusesonusing advanced manufacturing techniques as enablers for materials development and to create strategic values for the industries. He is also active in inter-disciplinary research and translational work. His research has been awarded the Best PhD Thesis Award by MAE, NTU, Singapore, as well as the Springer Theses Award from Springer Nature, Germany in 2017. Swee Leong has worked on numerous 3D printing projects with government agencies, universities, research institutes and industrial collaborators. Swee Leong has filed five patents pertaining to 3D printing processes and materials. He has published 1 book, 4 book chapters and more than 50 peer reviewed journal and conferencearticles. SweeLeongcurrentlyhasanh-indexof30withmorethan4500citations(Webof Science,31May2022). WaiYeeYeong Associate Professor Wai Yee Yeong is the winner of the TCT Women in 3D Printing Innovator Award 2019 and named as one of the Singapore 100 Women in Tech List 2021. Her work is well-recognized, with an H-index of 56 and more than 12,000 citations on Google Scholar. She has filed multiple patents and knowhows, with a key interest in Bioprinting and the 3D printing ofnewmaterials. Onacademicfronts,sheistheAssociateEditorfor2internationaljournalsandhas authored3textbookson3Dprinting. ProfYeongservesasProgramDirectorintheSingaporeCentre for 3D Printing and HP-NTU Digital Manufacturing Corp Lab. Prof Yeong was awarded the NRF Investigatorship(Classof2022)inherpursuitforgroundbreakingandhigh-riskresearch. vii polymers Editorial Recent Progress in Research of Additive Manufacturing for Polymers SweeLeongSing1,* andWaiYeeYeong2 1 DepartmentofMechanicalEngineering,NationalUniversityofSingapore,Singapore117575,Singapore 2 SingaporeCentrefor3DPrinting,SchoolofMechanical&AerospaceEngineering, NanyangTechnologicalUniversity,Singapore639798,Singapore;[email protected] * Correspondence:[email protected]@nus.edu.sg Additivemanufacturing(AM)methodshavegrownandevolvedrapidlyinrecent years. AMforpolymersisparticularlyexcitingandhasgreatpotentialintransformative andtranslationalresearchinmanyfields,suchasbiomedical[1–3],aerospace[4,5],and electronics[6,7]. CurrentmethodsforpolymerAMincludematerialextrusion,material jetting,vatphotopolymerization,andpowderbedfusion. Asthesetechniquesmatured anddeveloped,morefunctionalitieshavebeenaddedtoAMparts. Suchfunctionalities includemulti-materialfabrication[8–10]andintegrationwithartificialintelligence[11]. These have resulted in polymer AM to evolve from a rapid prototyping tool to actual manufacturingsolution. Inthisspecialissue,state-of-theartresearchandreviewarticlesarecollected.Theyfocus ontheprocess–structure–propertiesrelationshipsinpolymerAM.Intotal,onereviewand nineoriginalresearcharticlesareincluded. Gülcanetal. providedacomprehensivereview onthematerialjettingtechniqueforpolymerAMbyanalyzingtheeffectofthecritical processparametersandprovidingbenchmarkingwithothermanufacturingprocesses[12]. Intheirresearch,Nagarajanetal. investigatedtheuseofpolymercompositesthatcontain ferromagneticfillersforapplicationsinelectronicandelectricaldevices. Thesecomposites Citation:Sing,S.L.;Yeong,W.Y. were processed using material jetting and alignment of the fillers was achieved using RecentProgressinResearchof magnetic field [13]. Wu et al. also used material jetting to produce novel composite AdditiveManufacturingfor materialsthataremulti-material[14]. Udroiustudiedtheuseofmaterialjettingproduced Polymers.Polymers2022,14,2267. surfacesforaerodynamicmodels[15]. Samatetal. evaluatedthemechanicalandinvitro https://doi.org/10.3390/ properties of material extruded thermoplastic polyurethane and polylactic acid blend polym14112267 fortrachealtissueengineering[16]. Zhangetal. alsousedmaterialextrusionofblends Received:12May2022 for their experiments. They studied biodegradable polyesters and adjusted the blend Accepted:30May2022 compositionstotailorthemechanicalperformance[17]. Catanaetal. studiedthebending Published:2June2022 resistance of polylactic acids and compared them to the simulations. They found that Publisher’sNote:MDPIstaysneutral theAMpartsdeviatedfromsimulationsduetofluctuationsinprocessparameters[18]. withregardtojurisdictionalclaimsin JiangandDrummerstudiedtheeffectofcuringstrategyonthepartaccuracyproduced publishedmapsandinstitutionalaffil- by vat photopolymerization [19]. Gueche et al. investigated the feasibility of using di- iations. carboxylicacidstoproducesolidoralformswithcopovidoneandibuprofenusingpowder bed fusion [20]. Finally, Schlicht et al. developed new scanning strategies using quasi- simultaneousexposureoffractalscanpathsforpowderbedfusionofpolymersthatcan reducetheenergyconsumptionoftheprocess[21]. Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. Acknowledgments:ThisresearchissupportedbytheNationalResearchFoundation,PrimeMinis- This article is an open access article ter’sOffice,SingaporeunderitsMedium-SizedCentrefundingscheme. distributed under the terms and conditionsoftheCreativeCommons ConflictsofInterest:Theauthorsdeclarenoconflictofinterest. Attribution(CCBY)license(https:// creativecommons.org/licenses/by/ 4.0/). 1 Polymers2022,14,2267 References 1. Luis,E.;Pan,H.M.;Bastola,A.K.;Bajpai,R.;Sing,S.L.;Song,J.;Yeong,W.Y.3DPrintedSiliconeMeniscusImplants:Influenceof the3DPrintingProcessonPropertiesofSiliconeImplants.Polymers2020,12,2136.[CrossRef] 2. Luis,E.;Pan,H.M.;Sing,S.L.;Bajpai,R.;Song,J.;Yeong,W.Y.3DDirectPrintingofSiliconeMeniscusImplantUsingaNovel Heat-CuredExtrusion-BasedPrinter.Polymers2020,12,1031.[CrossRef][PubMed] 3. Khan,Z.N.;Albalawi,H.I.;Valle-Pérez,A.U.;Aldoukhi,A.;Hammad,N.;deLeón,E.H.-P.;Abdelrahman,S.;Hauser,C.A.E. From3Dprintedmoldstobioprintedscaffolds:Ahybridmaterialextrusionandvatpolymerizationbioprintingapproachforsoft matterconstructs.Mater.Sci.Addit.Manuf.2022,1,7. 4. Wang,F.;Zheng,J.;Wang,G.;Jiang,D.;Ning,F.Anovelprintingstrategyinadditivemanufacturingofcontinuouscarbonfiber reinforcedplasticcomposites.Manuf.Lett.2021,27,72–77.[CrossRef] 5. Weyhrich,C.W.;Long,T.E.Additivemanufacturingofhigh-performanceengineeringpolymers:Presentandfuture.Polym.Int. 2021,71,532–536.[CrossRef] 6. Criado-Gonzalez,M.;Dominguez-Alfaro,A.;Lopez-Larrea,N.;Alegret,N.;Mecerreyes,D.AdditiveManufacturingofConduct- ingPolymers:RecentAdvances,Challenges,andOpportunities.ACSAppl.Polym.Mater.2021,3,2865–2883.[CrossRef] 7. Divakaran,N.;Das,J.P.;V,A.K.P.;Mohanty,S.;Ramadoss,A.;Nayak,S.K.Comprehensivereviewonvariousadditivemanufac- turingtechniquesanditsimplementationinelectronicdevices.J.Manuf.Syst.2022,62,477–502.[CrossRef] 8. Ng,W.L.;Ayi,T.C.;Liu,Y.-C.;Sing,S.L.;Yeong,W.Y.;Tan,B.-H.FabricationandCharacterizationof3DBioprintedTriple-layered HumanAlveolarLungModels.Int.J.Bioprint.2021,7,332.[CrossRef] 9. Lee,J.M.;Sing,S.L.;Yeong,W.Y.BioprintingofMultimaterialswithComputer-aidedDesign/Computer-aidedManufacturing. Int.J.Bioprint.2020,6,245.[CrossRef] 10. Jiang,H.;Aihemaiti,P.;Aiyiti,W.;Kasimu,A.StudyOfthecompressionbehavioursof3D-printedPEEK/CFR-PEEKsandwich compositestructures.VirtualPhys.Prototyp.2022,17,138–155.[CrossRef] 11. Goh,G.D.;Sing,S.L.;Lim,Y.F.;Thong,J.L.J.;Peh,Z.K.;Mogali,S.R.;Yeong,W.Y.Machinelearningfor3Dprintedmulti-materials tissue-mimickinganatomicalmodels.Mater.Des.2021,211,110125.[CrossRef] 12. Gülcan,O.;Günaydın,K.;Tamer,A.TheStateoftheArtofMaterialJetting—ACriticalReview.Polymers2021,13,2829.[CrossRef] [PubMed] 13. Nagarajan,B.;Wang,Y.;Taheri,M.;Trudel,S.;Bryant,S.;Qureshi,A.J.;Mertiny,P.DevelopmentandCharacterizationofField StructuredMagneticComposites.Polymers2021,13,2843.[CrossRef][PubMed] 14. Wu, C.; Do, T.T.; Tran, P.MechanicalPropertiesofPolyJet3D-PrintedCompositesInspiredbySpace-FillingPeanoCurves. Polymers2021,13,3516.[CrossRef][PubMed] 15. Udroiu,R.NewMethodologyforEvaluatingSurfaceQualityofExperimentalAerodynamicModelsManufacturedbyPolymer JettingAdditiveManufacturing.Polymers2022,14,371.[CrossRef] 16. Samat,A.A.;Hamid,Z.A.A.;Jaafar,M.;Yahaya,B.H.MechanicalPropertiesandInVitroEvaluationofThermoplasticPolyurethane andPolylacticAcidBlendforFabricationof3DFilamentsforTrachealTissueEngineering.Polymers2021,13,3087.[CrossRef] 17. Zhang,Z.;He,F.;Wang,B.;Zhao,Y.;Wei,Z.;Zhang,H.;Sang,L.BiodegradablePGA/PBATBlendsfor3DPrinting:Material PerformanceandPeriodicMinimalSurfaceStructures.Polymers2021,13,3757.[CrossRef] 18. Catana,D.-I.;Pop,M.-A.;Brus,D.-I.ComparisonbetweenTestsandSimulationsRegardingBendingResistanceof3DPrinted PLAStructures.Polymers2021,13,4371.[CrossRef] 19. Jiang,F.;Drummer,D.AnalysisofUVCuringStrategyonReactionHeatControlandPartAccuracyforAdditiveManufacturing. Polymers2022,14,759.[CrossRef] 20. Gueche,Y.A.;Sanchez-Ballester,N.M.;Bataille,B.;Aubert,A.;Rossi,J.-C.;Soulairol,I.InvestigatingthePotentialPlasticizing EffectofDi-CarboxylicAcidsfortheManufacturingofSolidOralFormswithCopovidoneandIbuprofenbySelectiveLaser Sintering.Polymers2021,13,3282.[CrossRef] 21. Schlicht,S.;Greiner,S.;Drummer,D.LowTemperaturePowderBedFusionofPolymersbyMeansofFractalQuasi-Simultaneous ExposureStrategies.Polymers2022,14,1428.[CrossRef][PubMed] 2 polymers Review The State of the Art of Material Jetting—A Critical Review OrhanGülcan1,* ,KadirGünaydın1,* andAykutTamer2 1 GeneralElectricAviation,Gebze41400,Kocaeli,Turkey 2 DepartmentofMechanicalEngineering,ImperialCollegeLondon,LondonSW72AZ,UK; [email protected] * Correspondence:[email protected](O.G.);[email protected](K.G.);Tel.:+90-262-677-8410 Abstract:Materialjetting(MJ)technologyisanadditivemanufacturingmethodthatselectivelycures liquidphotopolymertobuildfunctionalparts.TheuseofMJtechnologyhasincreasedinpopularity andbeenadaptedbydifferentindustries,rangingfrombiomedicineanddentistrytomanufacturing andaviation,thankstoitsadvantagesinprintingpartswithhighdimensionalaccuracyandlow surfaceroughness.TobetterunderstandtheMJtechnology,itisessentialtoaddressthecapabilities, applicationsandtheusageareasofMJ.Additionally,thecomparisonofMJwithalternativemethods anditslimitationsneedtobeexplained. Moreover, theparametersinfluencingthedimensional accuracyandmechanicalpropertiesofMJprintedpartsshouldbestated.Thispaperaimstoreview thesecriticalaspectsofMJmanufacturingaltogethertoprovideanoverallinsightintothestateof theartofMJ. Keywords:traylocation;builddirection;surfacefinish;matte;glossy 1. Introduction Thedemandforcomplexpartsissteadilyincreasingindifferentindustries(especially Citation: Gülcan,O.;Günaydın,K.; in aerospace, automotive and biomedical industries) to manufacture lighter parts with Tamer,A.TheStateoftheArtof MaterialJetting—ACriticalReview. higherstiffness,higherstrengthandlowercost. Thankstotherecentadvancesinadditive Polymers2021,13,2829. https:// manufacturing(AM)technologies,engineershavemorefreedomtodesignandproduce doi.org/10.3390/polym13162829 complexpartswhichweremoredifficultifnotimpossibletomanufacturewithconventional means [1]. The main difference in AM from conventional, subtractive manufacturing AcademicEditor:SweeLeongSing methodsisthatitisbasedonalayer-by-layermanufacturingwhichresultsinareduced lowbuytoflyratio(theratioofweightofrawmaterialtoweightofthefinalpart)[2,3]. Received:17July2021 Accordingto“TheAmericanSocietyforTestingandMaterials(ASTM)Committee Accepted:13August2021 F42onAdditiveManufacturingTechnologies”AMtechnologiescanbeclassifiedas: pow- Published:23August2021 der bed fusion, material jetting, vat photopolymerization, directed energy deposition, materialextrusion, binderjettingandsheetlamination[4]. Thetwodifferenttermsare Publisher’sNote:MDPIstaysneutral utilizedtorefertomaterialjettingprocessessynonymously. Thesenamesareuseddue withregardtojurisdictionalclaimsin to secured naming rights of the material jetting printer manufacturers Stratasys (Poly- publishedmapsandinstitutionalaffil- Jet)and3DSystems(MultiJet). ThetechnologywasfirstdevelopedbyObjetGeometries iations. Ltd. in 2000 and was acquired later by Stratasys in 2012 [5]. According to ISO/ASTM 52900: 2015 standard, “droplets of feedstock material are selectively deposited” in MJ technology [6]. Although the MJ printer design varies slightly from manufacturer to manufacturer, a general schematic representation of MJ can be seen in Figure 1. In MJ, Copyright: © 2021 by the authors. air-excluding tanks are used to store photopolymer materials and these are deposited Licensee MDPI, Basel, Switzerland. asdropletsformingaverythinlayeronthebuildplatformafterheatingphotopolymer This article is an open access article in the transmission line in which photopolymer is transmitted from tank to nozzle [7]. distributed under the terms and Ultraviolet(UV)lightisemittedontothemoltenmaterialonthebuildplatformforcuring. conditionsoftheCreativeCommons Inthisphotopolymerization/photo-curingprocess,alightsourceofaspecificwavelength Attribution(CCBY)license(https:// isusedtocuremonomers/oligomersintheliquidstate[8].Unlikethewavelengthoflamps creativecommons.org/licenses/by/ usedbySLA(355nm)andDLP(405nm),thewavelengthofthelightsourceinMJcan 4.0/). 3

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.