ebook img

Process Integration PDF

613 Pages·2006·9.158 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Process Integration

ProcessSystemsEngineering Editedby MichaelC.Georgiadis, JulioR.Banga,and EfstratiosN.Pistikopoulos Related Titles Antonov,A. Engell,S.(ed.) Mathematica for LogisticOptimizationof ChemistsandChemical ChemicalProductionProcesses Engineers 2008 TheProgramforMathematical ISBN:978-3-527-30830-9 MethodsinChemistry 2011 Ingham,J.,Dunn,I.J.,Heinzle,E., ISBN:978-3-527-32748-5 Prenosil,J.E.,Snape,J.B. ChemicalEngineering Haber,R.,Bars,R.,Schmitz,U. Dynamics PredictiveControlin ProcessEngineering AnIntroductiontoModelling andComputerSimulation FromtheBasicstotheApplications 2007 2008 ISBN:978-3-527-31678-6 ISBN:978-3-527-31492-8 Buzzi-Ferraris,G.,Manenti,F. Keil,F.J.(ed.) FundamentalsandLinear ModelingofProcess AlgebrafortheChemical Intensification Engineer 2007 SolvingNumericalProblems ISBN:978-3-527-31143-9 2010 ISBN:978-3-527-32552-8 Roffel,B.,Betlem,B. Buzzi-Ferraris,G.,Manenti,F. ProcessDynamicsandControl InterpolationandRegression ModelingforControlandPrediction ModelsfortheChemical 2006 Engineer E-Book ISBN:978-0-470-05877-0 SolvingNumericalProblems 2010 Puigjaner,L.,Heyen,G.(eds.) ISBN:978-3-527-32652-5 ComputerAidedProcessand Dimian,A.C.,Bildea,C.S. ProductEngineering ChemicalProcessDesign 2006 Computer-AidedCaseStudies ISBN:978-3-527-30804-0 2008 ISBN:978-3-527-31403-4 Process Systems Engineering Volume 7: Dynamic Process Modeling Edited by Michael C. Georgiadis, Julio R. Banga, and Efstratios N. Pistikopoulos TheEditors AllbookspublishedbyWiley-VCHare carefullyproduced.Nevertheless,authors, Prof.MichaelC.Georgiadis editors,andpublisherdonotwarrantthe AristotleUniversityofThessaloniki informationcontainedinthesebooks, DepartmentofChemicalEngineering includingthisbook,tobefreeoferrors. Thessaloniki54124 Readersareadvisedtokeepinmindthat Greece statements,data,illustrations,procedural and detailsorotheritemsmayinadvertentlybe inaccurate. ImperialCollegeLondon Dept.ofChemicalEngineering LibraryofCongressCardNo.: CentreforProcessSystemEngineering appliedfor SouthKensingtonCampus LondonSW72AZ BritishLibraryCataloguing-in-PublicationData UnitedKingdom Acataloguerecordforthisbookisavailable fromtheBritishLibrary. Dr.JulioR.Banga IIM-CSIC Bibliographicinformationpublishedby (Bio)ProcessEngin.Group theDeutscheNationalbibliothek C/EduardoCabello6 TheDeutscheNationalbibliothekliststhis 36208Vigo publicationintheDeutsche Spain Nationalbibliografie;detailedbibliographic dataareavailableontheInternetat Prof.EfstratiosN.Pistikopoulos <http://dnb.d-nb.de>. ImperialCollegeLondon Dept.ofChemicalEngineering ©2011WILEY-VCHVerlagGmbH&Co. CentreforProcessSystemEngineering KGaA,Boschstr.12,69469Weinheim, SouthKensingtonCampus Germany LondonSW72AZ UnitedKingdom Allrightsreserved(includingthoseof translationintootherlanguages).Nopartof thisbookmaybereproducedinanyform–by photoprinting,microfilm,oranyothermeans –nortransmittedortranslatedintoa machinelanguagewithoutwritten permissionfromthepublishers.Registered names,trademarks,etc.usedinthisbook, evenwhennotspecificallymarkedassuch, arenottobeconsideredunprotectedbylaw. CompositionVTEXTypesetting,Vilnius PrintingandBindingbetz-druckGmbH, Darmstadt CoverDesignSchulzGrafik-Design, Fußgönheim PrintedintheFederalRepublicofGermany Printedonacid-freepaper ISBN:978-3-527-31696-0 V Contents Preface XV ListofContributors XXI Part I ChemicalandOtherProcessingSystems 1 1 DynamicProcessModeling:CombiningModelsandExperimental DatatoSolveIndustrialProblems 3 M.Matzopoulos 3 1.1 Introduction 3 1.1.1 MathematicalFormulation 4 1.1.2 ModelingSoftware 5 1.2 DynamicProcessModeling–BackgroundandBasics 5 1.2.1 PredictiveProcessModels 6 1.2.2 DynamicProcessModeling 6 1.2.3 KeyConsiderationsforDynamicProcessModels 7 1.2.4 ModelingofOperatingProcedures 9 1.2.5 KeyModelingConcepts 10 1.2.5.1 First-PrinciplesModeling 10 1.2.5.2 MultiscaleModeling 10 1.2.5.3 Equation-BasedModelingTools 11 1.2.5.4 DistributedSystemsModeling 12 1.2.5.5 MultipleActivitiesfromtheSameModel 13 1.2.5.6 Simulationvs.Modeling 13 1.3 AModel-BasedEngineeringApproach 14 1.3.1 High-FidelityPredictiveModels 14 1.3.2 Model-TargetedExperimentation 16 1.3.3 ConstructingHigh-FidelityPredictiveModels–AStep-by-Step Approach 16 1.3.4 IncorporatingHydrodynamicsUsingHybridModeling Techniques 22 1.3.5 ApplyingtheHigh-FidelityPredictiveModel 22 ProcessSystemsEngineering:Vol.7DynamicProcessModeling EditedbyMichaelC.Georgiadis,JulioR.Banga,andEfstratiosN.Pistikopoulos Copyright©2011WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim ISBN:978-3-527-31696-0 VI Contents 1.4 AnExample:MultitubularReactorDesign 23 1.4.1 MultitubularReactors–TheChallenge 24 1.4.2 TheProcess 25 1.4.3 TheSolution 25 1.4.4 DetailedDesignResults 29 1.4.5 Discussion 30 1.5 Conclusions 31 2 DynamicMultiscaleModeling–AnApplicationtoGranulation Processes 35 G.D.IngramandI.T.Cameron 35 2.1 Introduction 35 2.2 Granulation 36 2.2.1 TheOperationandItsSignificance 36 2.2.2 Equipment,Phenomena,andMechanisms 37 2.2.3 TheNeedforandChallengesofModelingGranulation 39 2.3 MultiscaleModelingofProcessSystems 41 2.3.1 CharacteristicsofMultiscaleModels 41 2.3.2 ApproachestoMultiscaleModeling 43 2.4 ScalesofInterestinGranulation 45 2.4.1 Overview 45 2.4.2 PrimaryParticleScale 47 2.4.3 GranuleScale 48 2.4.4 GranuleBedScale 48 2.4.5 VesselScale 49 2.4.6 CircuitScale 50 2.5 ApplicationsofDynamicMultiscaleModelingtoGranulation 52 2.5.1 Overview 52 2.5.2 FaultDiagnosisforContinuousDrumGranulation 55 2.5.3 Three-DimensionalMultiscaleModelingofBatchDrum Granulation 56 2.5.4 DEM-PBEModelingofBatchHigh-ShearGranulation 58 2.5.5 DEM-PBEModelingofContinuousDrumGranulation 59 2.6 Conclusions 61 3 ModelingofPolymerizationProcesses 67 B.S.AmaroandE.N.Pistikopoulos 67 3.1 Introduction 67 3.2 Free-RadicalHomopolymerization 68 3.2.1 KineticModeling 68 3.2.2 Diffusion-ControlledReactions 69 3.2.2.1 FickianDescriptionofReactantDiffusion 71 3.2.2.2 Free-VolumeTheory 72 Contents VII 3.2.2.3 ChainLengthDependentRateCoefficients 73 3.2.2.4 CombinationoftheFree-VolumeTheoryandChainLength DependentRateCoefficients 75 3.2.2.5 FullyEmpiricalModels 76 3.3 Free-RadicalMulticomponentPolymerization 77 3.3.1 Overview 77 3.3.2 Pseudo-HomopolymerizationApproximation 78 3.3.3 PolymerComposition 80 3.4 ModelingofPolymerMolecularProperties 80 3.4.1 MolecularWeightDistribution 80 3.5 APracticalApproach–SANBulkPolymerization 90 3.5.1 Model 90 3.5.1.1 KineticDiagram 90 3.5.1.2 MassBalances 91 3.5.1.3 DiffusionLimitations 92 3.5.1.4 Pseudo-HomopolymerizationApproximation 94 3.5.2 IllustrativeResults 95 3.6 Conclusions 97 4 ModelingandControlofProtonExchangeMembraneFuelCells 105 C.Panos,K.Kouramas,M.C.GeorgiadisandE.N.Pistikopoulos 105 4.1 Introduction 105 4.2 LiteratureReview 108 4.3 Motivation 109 4.3.1 ReactantFlowManagement 112 4.3.2 HeatandTemperatureManagement 112 4.3.3 WaterManagement 113 4.4 PEMFuelCellMathematicalModel 113 4.4.1 Cathode 114 4.4.2 Anode 117 4.4.3 AnodeRecirculation 119 4.4.4 FuelCellOutlet 120 4.4.5 MembraneHydrationModel 120 4.4.6 Electrochemistry 122 4.4.7 ThermodynamicBalance 123 4.4.8 AirCompressorandDCMotorModel 125 4.4.9 DCMotor 126 4.4.10 CoolingSystem 127 4.5 ReducedOrderModel 128 4.6 ConcludingRemarks 132 5 ModelingofPressureSwingAdsorptionProcesses 137 E.S.Kikkinides,D.NikolicandM.C.Georgiadis 137 5.1 Introduction 137 VIII Contents 5.2 ModelFormulation 144 5.2.1 AdsorbentBedModels 144 5.2.2 Single-BedAdsorber 145 5.2.3 AdsorptionLayerModel 146 5.2.3.1 GeneralBalanceEquations 146 5.2.3.2 MassBalance 147 5.2.3.3 HeatBalance 147 5.2.3.4 MomentumBalance 148 5.2.3.5 EquationofState 148 5.2.3.6 ThermophysicalProperties 148 5.2.3.7 AxialDispersion 148 5.2.3.8 TransportProperties 149 5.2.3.9 BoundaryConditions 149 5.2.4 AdsorbentParticleModel 150 5.2.4.1 GeneralMassBalanceEquations 150 5.2.4.2 LocalEquilibrium 151 5.2.4.3 LinearDrivingForce(LDF) 152 5.2.4.4 SurfaceDiffusion 152 5.2.4.5 PoreDiffusion 153 5.2.4.6 Gas–SolidPhaseEquilibriumIsotherms 154 5.2.5 GasValveModel 157 5.2.6 TheMultibedPSAModel 158 5.2.7 TheStateTransitionNetworkApproach 158 5.2.8 NumericalSolution 162 5.3 Case-StudyApplications 163 5.3.1 SimulationRunI 165 5.3.2 SimulationRunII 165 5.3.3 SimulationRunIII 166 5.4 Conclusions 167 6 AFrameworkfortheModelingofReactiveSeparations 173 E.Y.Kenig 173 6.1 Introduction 173 6.2 ReactiveSeparations 174 6.3 ClassificationofModelingMethods 176 6.4 Fluid-DynamicApproach 178 6.5 HydrodynamicAnalogyApproach 183 6.6 Rate-BasedApproach 188 6.7 ParameterEstimationandVirtualExperiments 193 6.8 BenefitsoftheComplementaryModeling 196 6.9 ConcludingRemarks 199 Contents IX 7 EfficientReducedOrderDynamicModelingofComplexReactive andMultiphaseSeparationProcessesUsingOrthogonalCollocation onFiniteElements 203 P.Seferlis,T.DamartzisandN.Dalaouti 203 7.1 Introduction 203 7.2 NEQ/OCFEModelFormulation 205 7.2.1 ConventionalandReactiveAbsorptionandDistillation 207 7.2.2 MultiphaseReactiveDistillation 213 7.3 AdaptiveNEQ/OCFEforEnhancedPerformance 218 7.4 DynamicSimulationResults 220 7.4.1 ReactiveAbsorptionofNOx 220 7.4.1.1 ProcessDescription 220 7.4.1.2 DynamicSimulationResults 223 7.4.2 EthylAcetateProductionviaReactiveDistillation 225 7.4.2.1 ProcessDescription 225 7.4.2.2 DynamicSimulationResults 227 7.4.3 ButylAcetateProductionviaReactiveMultiphaseDistillation 231 7.4.3.1 ProcessDescription 231 7.4.3.2 DynamicSimulationResults 232 7.5 Epilog 234 8 ModelingofCrystallizationProcesses 239 A.Abbas,J.RomagnoliandD.Widenski 239 8.1 Introduction 239 8.2 Background 240 8.2.1 CrystallizationMethods 241 8.2.1.1 RecrystallizationMethods 241 8.2.2 DrivingForce 242 8.3 SolubilityPredictions 243 8.3.1 EmpiricalApproach 243 8.3.2 CorrelativeThermodynamic 244 8.3.3 PredictiveThermodynamic 244 8.3.3.1 Jouyban–AcreeModel 245 8.3.3.2 MOSCEDModel 245 8.3.3.3 NRTL-SACModel 246 8.3.3.4 UNIFACModel 247 8.3.3.5 SolubilityandActivityCoefficientRelationship 247 8.3.4 SolubilityExamples 247 8.3.5 SolutionConcentrationMeasurementProcessAnalyticalTools 250 8.4 CrystallizationMechanisms 251 8.4.1 Nucleation 251 8.4.1.1 ModelingNucleation 252 8.4.2 GrowthandDissolution 254 8.4.3 AgglomerationandAggregation 255 X Contents 8.4.4 Attrition 255 8.5 Population,Mass,andEnergyBalances 256 8.5.1 PopulationBalance 256 8.5.2 SolutionMethods 257 8.5.2.1 MethodofMoments 257 8.5.2.2 DiscretizationMethod 258 8.5.3 MassandEnergyBalances 264 8.6 CrystalCharacterization 264 8.6.1 CrystalShape 264 8.6.2 CrystalSize 265 8.6.3 CrystalDistribution 265 8.6.4 ParticleMeasurementProcessAnalyticalTools 266 8.7 SolutionEnvironmentandModelApplication 266 8.7.1 SimulationEnvironment 266 8.7.2 ExperimentalDesign 267 8.7.3 ParameterEstimation 268 8.7.4 Validation 269 8.8 Optimization 270 8.8.1 Example1:AntisolventFeedrateOptimization 270 8.8.2 Example2:OptimalSeedinginCoolingCrystallization 274 8.9 FutureOutlook 276 9 ModelingMultistageFlashDesalinationProcess–CurrentStatus andFutureDevelopment 287 I.M.Mujtaba 287 9.1 Introduction 287 9.2 IssuesinMSFDesalinationProcess 289 9.3 State-of-the-ArtinSteady-StateModelingofMSFDesalination Process 292 9.3.1 ScaleFormationModeling 299 9.3.1.1 EstimationofDynamicBrineHeaterFoulingProfile 301 9.3.1.2 ModelingtheEffectofNCGs 301 9.3.1.3 ModelingofEnvironmentalImpact 302 9.4 State-of-the-ArtinDynamicModelingofMSFDesalination Process 303 9.5 CaseStudy 308 9.5.1 Steady-StateOperation 308 9.5.2 DynamicOperation 311 9.6 FutureChallenges 312 9.6.1 ProcessModeling 312 9.6.2 Steady-StateandDynamicSimulation 313 9.6.3 TacklingEnvironmentalIssues 313 9.6.4 ProcessOptimization 314 9.7 Conclusions 315

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.