Chemical Engineering SECOND S E C O N D E D I T I O N EDITION PROCESS ENGINEERING and D P E R ® DESIGN USING VISUAL BASIC S O I C G E ARUN DATTA N S S “Many books for chemical engineers have been written from an academic point of view U E S E C O N D E D I T I O N and are intensely theoretical. [This book] demonstrates that it has been written by S N I someone who not only has a comprehensive theoretical understanding of the chemical en- N G gineering principles which are important for guiding the design engineer, but also has the PROCESS ENGINEERING and G I authority of a practicing professional who is current in the field of process engineering.” N ––Anthony Buckley, Chemical Engineer, Brisbane, Queensland, Australia V ® E DESIGN USING VISUAL BASIC I E S Software tools are a great aid to process engineers, but too much dependence on those tools can lead to R U suboptimal or inappropriate designs. Reliance on specific software can also be a hindrance to the design I A N ARUN DATTA process, if one lacks a firm understanding of the principles underlying its operation. Process Engineering L and Design Using Visual Basic®, Second Edition continues to provide you with a unique and versatile G suite of programs along with the underlying concepts, principles, and mathematics needed to make the B a best use of them. A n S d Each chapter details the theory and techniques that provide the basis for specific design and engineering I C software and then showcases its development and functionality. This all-inclusive guide moves systemati- ® cally from basic mathematics to thermodynamics, fluid mechanics, heat transfer, distillation, separators, overpressure protection, and glycol dehydration, providing the necessary design guidelines based on international codes. Worked examples demonstrate the utility of each program. Updated throughout, this edition includes three new chapters on thermodynamics, heat transfer, and ® distillation as well as five new Visual Basic programs. After reading this book you will be able to im- mediately put the programs into action and have total confidence in the result, regardless of your level of DATTA experience. All 14 programs are available for download, including a useful unit conversion tool. K12916 6000 Broken Sound Parkway, NW Suite 300, Boca Raton, FL 33487 711 Third Avenue New York, NY 10017 © 2010 Taylor & Francis Group, LLC an informa business 2 Park Square, Milton Park www.crcpress.com Abingdon, Oxon OX14 4RN, UK S E C O N D E D I T I O N PROCESS ENGINEERING and ® DESIGN USING VISUAL BASIC © 2010 Taylor & Francis Group, LLC S E C O N D E D I T I O N PROCESS ENGINEERING and ® DESIGN USING VISUAL BASIC ARUN DATTA Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business © 2010 Taylor & Francis Group, LLC CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2014 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20130715 International Standard Book Number-13: 978-1-4398-6281-0 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com To my late mother Smt. Narayani Datta © 2010 Taylor & Francis Group, LLC Contents Preface ..............................................................................................................xxv Acknowledgments ......................................................................................xxvii Author .............................................................................................................xxix Chapter 1 Basic mathematics .......................................................................1 Introduction ........................................................................................................1 Physical constants ..............................................................................................1 SI prefixes .......................................................................................................1 Mensuration ........................................................................................................1 Triangles .........................................................................................................1 Rectangles .......................................................................................................2 Parallelogram (opposite sides parallel) ......................................................2 Rhombus (equilateral parallelogram) ........................................................3 Trapezoid (four sides, two parallel) ............................................................3 Quadrilateral (four sided) ............................................................................4 Regular polygon of n sides ...........................................................................4 Circle ...............................................................................................................4 Ellipse ..............................................................................................................6 Parabola ..........................................................................................................6 Prism ...............................................................................................................6 Pyramid ..........................................................................................................7 Right circular cylinder ..................................................................................7 Sphere ..............................................................................................................7 Right circular cone ........................................................................................8 Dished end .....................................................................................................8 Irregular shape ..............................................................................................8 Trapezoidal rule .............................................................................................8 Simpson’s rule ................................................................................................8 Irregular volume ...........................................................................................9 Algebra ................................................................................................................9 Factoring .........................................................................................................9 Arithmetic progression ................................................................................9 Geometric progression ...............................................................................10 © 2010 Taylor & Francis Group, LLC vii viii Contents Infinite series (in GP) ..................................................................................10 Best-fit straight line (least squares method) ............................................10 Binomial equation .......................................................................................11 Polynomial equation ...................................................................................11 Maxima/minima .........................................................................................12 Cubic equation .............................................................................................13 General procedure .............................................................................13 Matrix ............................................................................................................16 Addition and multiplication of matrices ........................................16 Addition of matrices ..........................................................................16 Multiplication of matrices.................................................................16 Matrix properties involving addition .............................................17 Matrix properties involving multiplication ...................................17 Matrix properties involving addition and multiplication .....................................................................................18 Transpose ............................................................................................18 Symmetric matrix ..............................................................................18 Diagonal matrix .................................................................................19 Determinants ...............................................................................................19 Properties of determinants...............................................................19 Cofactor ...............................................................................................21 Determinant and inverses ................................................................21 Adjoint .................................................................................................21 Cramer’s rule ................................................................................................22 Trigonometry ....................................................................................................24 Functions of circular trigonometry ..........................................................24 Periodic functions .......................................................................................25 Magic identity ..............................................................................................25 Addition formulas .......................................................................................25 Double angle and half angle formulas .....................................................26 Product and sum formulas ........................................................................27 Relations between angles and sides of triangles ....................................28 Law of sines ..................................................................................................28 Law of tangents ...........................................................................................28 Law of cosines ..............................................................................................28 Other relations .............................................................................................29 Inverse trigonometric functions ................................................................29 Hyperbolic functions ..................................................................................30 Other hyperbolic functions ........................................................................31 Inverse hyperbolic functions .....................................................................31 Analytical geometry ........................................................................................32 Straight line ..................................................................................................32 Straight line through two points .....................................................32 © 2010 Taylor & Francis Group, LLC Contents ix Three points on one line ...................................................................32 Circle .............................................................................................................33 Tangent ................................................................................................33 Normal ................................................................................................33 Four points on a circle .......................................................................34 Circle through three points ..............................................................34 Conic section ................................................................................................35 Focus ....................................................................................................35 Eccentricity .........................................................................................35 Directrix ..............................................................................................35 Partial derivatives ..............................................................................35 Parabola ...............................................................................................36 Tangent line with a given slope, m ..................................................38 Ellipse ..................................................................................................38 Hyperbola ...........................................................................................40 Calculus .............................................................................................................42 Differential calculus ....................................................................................42 Understanding the derivatives ..................................................................43 Standard derivatives ...................................................................................44 Integral calculus ..........................................................................................45 Volume of horizontal dished end ....................................................45 Volume of vertical dished end .........................................................47 Standard integrals .......................................................................................48 Differential equations ......................................................................................49 First-order differential equations ..............................................................49 Separation of variables ......................................................................50 Second-order differential equations .........................................................50 Bessel function ...................................................................................51 Partial differential equations..........................................................................52 Laplace transform .......................................................................................59 Standard Laplace transforms ....................................................................60 Fourier half-range expansions ...................................................................61 Fourier half-range cosine series ................................................................61 Fourier half-range sine series ....................................................................61 Numerical analysis ..........................................................................................63 Solving linear equations (Newton’s method) ..........................................63 Newton’s method in two variables ...........................................................64 Numerical methods in linear algebra ......................................................66 Gauss elimination ..............................................................................66 Cholesky method ...............................................................................67 Numerical integration ................................................................................69 Trapezoidal rule .................................................................................69 Simpson’s rule ....................................................................................70 © 2010 Taylor & Francis Group, LLC
Description: