ebook img

Process control system fault diagnosis: a Bayesian approach PDF

360 Pages·2016·5.782 MB·English
by  GonzalezRubenHuangBiaoQiFei
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Process control system fault diagnosis: a Bayesian approach

(cid:2) PROCESS CONTROL SYSTEM FAULT DIAGNOSIS (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) PROCESS CONTROL SYSTEM FAULT DIAGNOSIS A BAYESIAN APPROACH Ruben Gonzalez Fei Qi Biao Huang (cid:2) (cid:2) (cid:2) (cid:2) Thiseditionfirstpublished2016 ©2016,JohnWiley&Sons,Ltd Firsteditionpublishedin2016 Registeredoffice JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,United Kingdom Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapply forpermissiontoreusethecopyrightmaterialinthisbookpleaseseeourwebsiteatwww.wiley.com. Therightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewith theCopyright,DesignsandPatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingor otherwise,exceptaspermittedbytheUKCopyright,DesignsandPatentsAct1988,withouttheprior permissionofthepublisher. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprint maynotbeavailableinelectronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.All brandnamesandproductnamesusedinthisbookaretradenames,servicemarks,trademarksor registeredtrademarksoftheirrespectiveowners.Thepublisherisnotassociatedwithanyproductor vendormentionedinthisbook (cid:2) LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbestefforts (cid:2) inpreparingthisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyor completenessofthecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesof merchantabilityorfitnessforaparticularpurpose.Itissoldontheunderstandingthatthepublisheris notengagedinrenderingprofessionalservicesandneitherthepublishernortheauthorshallbeliable fordamagesarisingherefrom.Ifprofessionaladviceorotherexpertassistanceisrequired,theservices ofacompetentprofessionalshouldbesought. LibraryofCongressCataloging-in-PublicationData Names:Gonzalez,Ruben,1985-author.|Qi,Fei,1983-author|Huang,Biao, 1962-author. Title:Processcontrolsystemfaultdiagnosis:aBayesianapproach/Ruben Gonzalez,FeiQi,BiaoHuang. Description:Firstedition.|Chichester,WestSussex,UnitedKingdom:John Wiley&Sons,2016.|Includesbibliographicalreferencesandindex. Identifiers:LCCN2016010340|ISBN9781118770610(cloth)|ISBN9781118770597 (epub) Subjects:LCSH:Chemicalprocesscontrol–Statisticalmethods.|Bayesian statisticaldecisiontheory.|Faultlocation(Engineering) Classification:LCCTP155.75.G672016|DDC660/.2815–dc23LCrecordavailableat https://lccn.loc.gov/2016010340 AcataloguerecordforthisbookisavailablefromtheBritishLibrary. Setin10/12pt,TimesLTStdbySPiGlobal,Chennai,India. 1 2016 (cid:2) (cid:2) Contents Preface xiii Acknowledgements xvii ListofFigures xix ListofTables xxiii Nomenclature xxv (cid:2) PartI FUNDAMENTALS (cid:2) 1 Introduction 3 1.1 MotivationalIllustrations 3 1.2 PreviousWork 4 1.2.1 DiagnosisTechniques 4 1.2.2 MonitoringTechniques 7 1.3 BookOutline 12 1.3.1 ProblemOverviewandIllustrativeExample 12 1.3.2 OverviewofProposedWork 12 References 16 2 PrerequisiteFundamentals 19 2.1 Introduction 19 2.2 BayesianInferenceandParameterEstimation 19 2.2.1 TutorialonBayesianInference 24 2.2.2 TutorialonBayesianInferencewithTimeDependency 27 2.2.3 BayesianInferencevs.DirectInference 32 2.2.4 TutorialonBayesianParameterEstimation 33 2.3 TheEMAlgorithm 38 2.4 TechniquesforAmbiguousModes 44 2.4.1 TutorialonΘParametersinthePresenceofAmbiguousModes 46 (cid:2) (cid:2) vi Contents 2.4.2 TutorialonProbabilitiesUsingΘParameters 47 2.4.3 Dempster–ShaferTheory 48 2.5 KernelDensityEstimation 51 2.5.1 FromHistogramstoKernelDensityEstimates 52 2.5.2 BandwidthSelection 54 2.5.3 KernelDensityEstimationTutorial 55 2.6 Bootstrapping 56 2.6.1 BootstrappingTutorial 57 2.6.2 SmoothedBootstrappingTutorial 57 2.7 NotesandReferences 60 References 61 3 BayesianDiagnosis 62 3.1 Introduction 62 3.2 BayesianApproachforControlLoopDiagnosis 62 3.2.1 ModeM 62 3.2.2 EvidenceE 63 3.2.3 HistoricalDatasetD 64 3.3 LikelihoodEstimation 65 3.4 NotesandReferences 67 References 67 (cid:2) (cid:2) 4 AccountingforAutodependentModesandEvidence 68 4.1 Introduction 68 4.2 TemporallyDependentEvidence 68 4.2.1 EvidenceDependence 68 4.2.2 EstimationofEvidence-transitionProbability 70 4.2.3 IssuesinEstimatingDependenceinEvidence 74 4.3 TemporallyDependentModes 75 4.3.1 ModeDependence 75 4.3.2 EstimatingModeTransitionProbabilities 77 4.4 DependentModesandEvidence 81 4.5 NotesandReferences 82 References 82 5 AccountingforIncompleteDiscreteEvidence 83 5.1 Introduction 83 5.2 TheIncompleteEvidenceProblem 83 5.3 DiagnosiswithIncompleteEvidence 85 5.3.1 SingleMissingPatternProblem 86 5.3.2 MultipleMissingPatternProblem 92 5.3.3 LimitationsoftheSingleandMultipleMissingPatternSolutions 93 5.4 NotesandReferences 94 References 94 (cid:2) (cid:2) Contents vii 6 AccountingforAmbiguousModes:ABayesianApproach 96 6.1 Introduction 96 6.2 ParametrizationofLikelihoodGivenAmbiguousModes 96 6.2.1 InterpretationofProportionParameters 96 6.2.2 ParametrizingLikelihoods 97 6.2.3 InformedEstimatesofLikelihoods 98 6.3 Fagin–HalpernCombination 99 6.4 Second-orderApproximation 100 6.4.1 ConsistencyofΘParameters 101 6.4.2 ObtainingaSecond-orderApproximation 101 6.4.3 TheSecond-orderBayesianCombinationRule 103 6.5 BriefComparisonofCombinationMethods 104 6.6 ApplyingtheSecond-orderRuleDynamically 105 6.6.1 UnambiguousDynamicSolution 105 6.6.2 TheSecond-orderDynamicSolution 106 6.7 MakingaDiagnosis 107 6.7.1 SimpleDiagnosis 107 6.7.2 RangedDiagnosis 107 6.7.3 ExpectedValueDiagnosis 107 6.8 NotesandReferences 111 References 111 7 AccountingforAmbiguousModes:ADempster–ShaferApproach 112 (cid:2) (cid:2) 7.1 Introduction 112 7.2 Dempster–ShaferTheory 112 7.2.1 BasicBeliefAssignments 112 7.2.2 ProbabilityBoundaries 114 7.2.3 Dempster’sRuleofCombination 114 7.2.4 Short-cutCombinationforUnambiguousPriors 115 7.3 GeneralizingDempster–ShaferTheory 116 7.3.1 Motivation:DifficultieswithBBAs 117 7.3.2 GeneralizingtheBBA 119 7.3.3 GeneralizingDempster’sRule 122 7.3.4 Short-cutCombinationforUnambiguousPriors 123 7.4 NotesandReferences 124 References 125 8 MakingUseofContinuousEvidenceThroughKernelDensityEstimation 126 8.1 Introduction 126 8.2 Performance:Continuousvs.DiscreteMethods 127 8.2.1 AverageFalseNegativeDiagnosisCriterion 127 8.2.2 PerformanceofDiscreteandContinuousMethods 129 8.3 KernelDensityEstimation 132 8.3.1 FromHistogramstoKernelDensityEstimates 132 8.3.2 DefiningaKernelDensityEstimate 134 8.3.3 BandwidthSelectionCriterion 135 8.3.4 BandwidthSelectionTechniques 136 (cid:2) (cid:2) viii Contents 8.4 DimensionReduction 137 8.4.1 IndependenceAssumptions 138 8.4.2 PrincipalandIndependentComponentAnalysis 139 8.5 MissingValues 139 8.5.1 KernelDensityRegression 140 8.5.2 ApplyingKernelDensityRegressionforaSolution 141 8.6 DynamicEvidence 142 8.7 NotesandReferences 143 References 143 9 AccountingforSparseDataWithinaMode 144 9.1 Introduction 144 9.2 AnalyticalEstimationoftheMonitorOutputDistributionFunction 145 9.2.1 ControlPerformanceMonitor 145 9.2.2 ProcessModelMonitor 146 9.2.3 SensorBiasMonitor 148 9.3 BootstrapApproachtoEstimatingMonitorOutputDistributionFunction 150 9.3.1 ValveStictionIdentification 150 9.3.2 TheBootstrapMethod 153 9.3.3 IllustrativeExample 156 9.3.4 Applications 160 9.4 ExperimentalExample 164 9.4.1 ProcessDescription 164 (cid:2) (cid:2) 9.4.2 DiagnosticSettingsandResults 167 9.5 NotesandReferences 170 References 170 10 AccountingforSparseModesWithintheData 172 10.1 Introduction 172 10.2 ApproachesandAlgorithms 172 10.2.1 ApproachforComponentDiagnosis 173 10.2.2 ApproachforBootstrappingNewModes 176 10.3 Illustration 181 10.3.1 Component-basedDiagnosis 184 10.3.2 BootstrappingforAdditionalModes 188 10.4 Application 194 10.4.1 MonitorSelection 195 10.4.2 ComponentDiagnosis 195 10.5 NotesandReferences 198 References 199 PartII APPLICATIONS 11 IntroductiontoTestbedSystems 203 11.1 SimulatedSystem 203 11.1.1 MonitorDesign 203 (cid:2)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.