”Lucian Blaga” University of Sibiu Department of Mathematics and Romanian Mathematical Scientific Society Proceedings of The Fifth International Symposium ”Mathematical Inequalities” Sibiu, 25 - 27 September 2008 Editors: Dumitru Acu Emil C. Popa Ana-Maria Acu Florin Sofonea Copyright (cid:176)c 2009 Publishing of ”Lucian Blaga” University from Sibiu ISBN 978-973-739-740-9 ISSN 2066-2386 COVER DESIGN AND EDITOR-IN-COMPUTER Ana Maria Acu Department of Mathematics Str. Dr. Ioan Ratiu, No. 5-7 550012-Sibiu, Romania The Fifth International Symposium ”Mathematical Inequalities” 25 - 27 September 2008, Sibiu, Romania ORGANIZING COMMITTEE Professor Ph.D. Dumitru Acu - Head of the Department of Mathematics Ph.D. Constantin Oprean - Rector of ”Lucian Blaga” University Professor Ph.D. Dumitru Batˆar - Dean of the Faculty of Sciences Professor Ph.D. Ilie Barza - Karlstad University, Sweden Professor Ph.D. Josip E. Peˇcari´c - University of Zagreb, Croatia Professor Ph.D. Sever S. Dragomir - Victoria University of Technology, Australia Assoc.Professor Ph.D. Mihai Damian - Strasbourg University, France Assoc.Professor Ph.D. Sorina Barza - Karlstad University, Sweden Professor Ph.D. Emil C. Popa - ”Lucian Blaga” University of Sibiu Professor Ph.D. Vasile Berinde - North University of Baia Mare, Romania Assoc.Professor Ph.D. Silviu Cr˘aciuna¸s - ”Lucian Blaga” University of Sibiu Assoc.Professor Ph.D. Florin Sofonea - ”Lucian Blaga” University of Sibiu Lecturer Ph.D. Ana-Maria Acu - ”Lucian Blaga” University of Sibiu Lecturer Lecturer Ph.D. Marian Olaru - ”Lucian Blaga” University of Sibiu Lecturer Ph.D. Adrian Branga - ”Lucian Blaga” University of Sibiu Lecturer Ph.D. Eugen Constantinescu - ”Lucian Blaga” University of Sibiu Asist. Petric˘a Dicu - ”Lucian Blaga” University of Sibiu 5 Participants to The Fifth International Symposium ”Mathematical Inequalities” Sibiu, 25 - 27 September 2008 No. Name/ e-mail Affiliation Crt. Ana Maria Acu ”LucianBlaga”University 1 [email protected] fromSibiu,Romania Mugur Acu ”LucianBlaga”University 2 [email protected] fromSibiu,Romania Dumitru Acu ”LucianBlaga”University 3 [email protected] ofSibiu,Romania Adrian Branga ”LucianBlaga”University 4 [email protected] fromSibiu,Romania Daniel Breaz ”1Decembrie1918”University 5 [email protected] ofAlba-Iulia,Romania Nicoleta Breaz ”1Decembrie1918”University 6 [email protected] ofAlba-Iulia,Romania Amelia Bucur ”LucianBlaga”University 7 [email protected] fromSibiu,Romania Eugen Constantinescu ”LucianBlaga”University 8 [email protected] fromSibiu,Romania Daniela Dicu LiceulTeoretic”GheorgheLaz˘ar” 9 [email protected] Avrig,Romania Gheorghe Dicu Gr. S¸c. Forestier 10 CurteadeArge¸s,Romania Petric˘a Dicu ”LucianBlaga”University 11 [email protected] ofSibiu,Romania Irina Dorca ”LucianBlaga”University 12 [email protected] ofSibiu,Romania Eugen Draghici ”LucianBlaga”University 13 [email protected] fromSibiu,Romania Ali Ebadian UrmiaUniversity, 14 [email protected] Iran 6 Bogdan Gavrea ”TehnicalUniversity” 15 [email protected] ofCluj-Napoca,Romania Ioan Gavrea ”TehnicalUniversity” 16 [email protected] ofCluj-Napoca,Romania Heiner Gonska UniversityofDuisburg-Essen 17 [email protected] Germania Jose Luis Lopez-Bonilla EscuelaSuperiordeIngenieria 18 joseluis.lopezbonilla@gm MecanicayElectricaIns,Mexic Vasile Mihe¸san ”TehnicalUniversity” 19 [email protected] ofCluj-Napoca,Romania Nicu¸sor Minculete University”DimitrieCantemir” 20 [email protected] ofBrasov,Romania Shahram Najafzadeh UniversityofMaragheh, 21 [email protected] Iran Marian Olaru ”LucianBlaga”University 22 [email protected] fromSibiu,Romania S¸tefan Poka GheorgheSincaiHighScholl 23 Cluj-Napoca,Romania Emil C. Popa ”LucianBlaga”University 24 [email protected] fromSibiu,Romania Ioan Popa EdmondNicolauCollege 25 [email protected] Cluj-Napoca,Romania Lumini¸ta Preoteasa Gr. S¸c. Forestier 26 CurteadeArge¸s,Romania COMSATSInstituteof Arif Rafiq 27 InformationTechnology arafi[email protected] Lahore,Pakistan Sofonea Florin ”LucianBlaga”University 28 sofoneafl[email protected] fromSibiu,Romania Gheorghe S¸andru S¸coalaGeneral˘aVi¸steadeJos 29 Bra¸sov,Romania Doru S¸tefanescu UniversityofBucharest 30 [email protected] Romania Ioan T¸incu ”LucianBlaga”University 31 [email protected] fromSibiu,Romania Andrei Vernescu UniversityValahia 32 [email protected] ofTargoviste,Romania 7 Contents A. M. Acu, M. Acu, A. Rafiq – Some inequalities of Ostrowski type in the case of weighted integrals....................................................................9 D. Acu – Some interesting elementary inequalities..................................23 A. Branga – An inequality for generalized spline functions.........................33 D. Breaz, N. Breaz – Some starlikeness conditions proved by inequalities.........40 I. Dorca – Note on subclass of β-starlike and β-convex functions with negative coefficients associated with some hyperbola.........................................47 B. Gavrea – On some inequality for convex functions..............................62 I. Gavrea – On some inequalities for convex functions of higher order..............67 H. Gonska, I. Ra¸sa – A Voronovskaya estimate with second order modulus of smoothness.........................................................................76 V. Mihe¸san – Popoviciu type inequalities for pseudo arithmetic and geometric means....................................................................91 V. Mihe¸san – Rado type inequalities for weighted power pseudo means ............98 N. Minculete – Several inequalities about arithmetic functions which use the e-divisors..........................................................................107 N. Minculete, P.Dicu – Inequalities between some arithmetic functions..........116 I. M. Olaru – An integral inequality for convex functions of three order...........126 E.C. Popa – On a problem of A. Shafie...........................................129 F. Sofonea, A.M. Acu, A. Rafiq – An error analysis for a family of four-point quadrature formulas...............................................................136 I. T¸incu, G. S¸andru – A proof of an inequality..................................146 8 Proceedings of the Fifth International Symposium ”Mathematical Inequalities” Sibiu, 25 - 27 September 2008 SOME INEQUALITIES OF OSTROWSKI TYPE IN THE CASE OF WEIGHTED INTEGRALS Ana Maria Acu, Mugur Acu, Arif Rafiq Abstract Some new inequalities of Ostrowski type are established. In this paperweconsideredtheweightedintegralcase. Someofthisinequal- ities are obtained using the mean value theorems. 2000 Mathematics Subject Classification: 65D30 , 65D32 Key words and phrases: quadrature rule, Ostrowski inequality 1. INTRODUCTION In 1938, A. M. Ostrowski proved the following classical inequality [5]: Theorem 1. Let f : [a,b] → R be continuous on [a,b] and differentiable on (a,b), whose first derivative f(cid:48) : (a,b) → R is bounded on (a,b), i.e., |f(cid:48)(x)| ≤ M < ∞. Then, (cid:181) (cid:182) a+b 2 (cid:175) (cid:90) (cid:175) x− (cid:175) 1 b (cid:175) 1 2 (cid:175)f(x)− f(t)dt(cid:175) ≤ + (b−a)M, (cid:175) (cid:175) b−a 4 (b−a)2 a for all x ∈ [a,b], where M is a constant. 9 A.M. Acu, M. Acu, A. Rafiq - Some inequalities of Ostrowski type... In [10], N. Ujevic proved the following generalization of Ostrowski(cid:48)s inequality: Theorem 2.[10] Let I ⊂ R be a open interval and a,b ∈ I, a < b. If f : I → R is a differentiable function such that γ ≤ f(cid:48)(t) ≤ Γ, for all t ∈ [a,b], for some constants Γ,γ ∈ R, then we have (cid:175) (cid:181) (cid:182) (cid:90) (cid:175) (cid:34) (cid:161) (cid:162) (cid:35) (cid:175) Γ+γ a+b 1 b (cid:175) 1 1 x−a+b 2 (cid:175)f(x)− x− − f(t)dt(cid:175) ≤ (Γ−γ)(b−a) + 2 . (cid:175) (cid:175) 2 2 b−a 2 4 (b−a)2 a 2. THE CASE OF WEIGHTED INTEGRALS In this section we obtain some inequalities of Ostrowski type in the case of weighted integrals. Let w : [a,b] → R be a nonnegative and integrable function on [a,b] defined by w(t) = (b−t)(t−a). Theorem 3. Let f : [a,b] → R be a differentiable mapping on (a,b) and suppose that γ ≤ f(cid:48)(t) ≤ Γ for all t ∈ (a,b). Then we have (cid:175)(cid:90) (cid:175) (cid:175) b (b−a)3 (cid:175) 5 (1) (cid:175) w(t)f(t)dt− (f(a)+f(b))(cid:175) ≤ (b−a)4(Γ−γ), (cid:175) (cid:175) 12 192 a (2) (cid:90) 1 b (b−a)3 1 (b−a)4(γ−S) ≤ w(t)f(t)dt− (f(a)+f(b)) ≤ (b−a)4(Γ−S), 12 12 12 a f(b)−f(a) where S = . b−a Proof. We define (cid:181) (cid:182) (cid:181) (cid:182) (cid:181) (cid:182) b−a 2 a+b 1 a+b 3 P(t) = t− − t− . 2 2 3 2 10