ebook img

Proceedings of the Annual Conference of the Prognostics and Health Management Society 2010 PDF

603 Pages·2011·49.29 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Proceedings of the Annual Conference of the Prognostics and Health Management Society 2010

www.phmsociety.org   ISBN  -­‐  978-­‐1-­‐936263-­‐03-­‐5   Proceedings of The Annual Conference of the Prognostics and Health Management Society 2011 PHM’11 ISBN - 978-­‐1-­‐936263-­‐03-­‐5 Montreal, Quebec Canada September 25 – 29, 2011 Edited  by:   José  R.  Celaya,     Sankalita  Saha,  and     Abhinav  Saxena AnnualConferenceofthePrognosticsandHealthManagementSociety,2011 ii AnnualConferenceofthePrognosticsandHealthManagementSociety,2011 Table of Contents Full Papers ABayesianProbabilisticApproachtoImprovedHealthManagementofSteamGeneratorTubes KaushikChatterjeeandMohammadModarres 1 A Combined Anomaly Detection and Failure Prognosis Approach for Estimation of Remaining Useful Life in Energy StorageDevices MarcosE.Orchard,LiangTang,GeorgeJ.Vachtsevanos 8 AMobileRobotTestbedforPrognostics-EnabledAutonomousDecisionMaking EdwardBalaban,SriramNarasimhan,MatthewDaigle,JoséR.Celaya,IndranilRoychoudhury,BhaskarSaha,Sankalita Saha,KaiGoebel 15 AModel-basedPrognosticsMethodologyforElectrolyticCapacitorsBasedonElectricalOverstressAcceleratedAging JoséR.Celaya,ChetanKulkarni,GautamBiswas,SankalitaSaha,KaiGoebel 31 AStructuralHealthMonitoringSoftwareToolforOptimization,DiagnosticsandPrognostics SethS.Kessler,EricB.Flynn,ChristopherT.Dunn,MichaelD.Todd 40 AStudyontheparameterestimationforcrackgrowthpredictionundervariableamplitudeloading SangHyuckLeem,DawnAn,SanghoKo,Joo-HoChoi 48 ATestbedforReal-TimeAutonomousVehiclePHMandContingencyManagementApplications LiangTang,EricHettler,BinZhang,JonathanDeCastro 56 AdaptiveLoad-AllocationforPrognosis-BasedRiskManagement BrianBole,LiangTang,KaiGoebel,GeorgeVachtsevanos 67 AnAdaptiveParticleFiltering-basedFrameworkforReal-timeFaultDiagnosisandFailurePrognosisofEnvironmental ControlSystems IoannisA.Raptis,GeorgeJ.Vachtsevanos 77 E2GK-pro: AnEvidentialEvolvingMultimodelingApproachforSystemsBehaviorPrediction LisaSerir,EmmanuelRamasso,NoureddineZerhouni 85 BayesianfatiguedamageandreliabilityanalysisusingLaplaceapproximationandinversereliabilitymethod XuefeiGuan,JingjingHe,RatneshwarJha,YongmingLiu 94 BayesianSoftwareHealthManagementForAircraftGuidance,Navigation,andControl JohannSchumann,TimmyMbaya,OleMengshoel 104 CommercializationofPrognosticsSystemsLeveragingCommercialOff-The-ShelfInstrumentation,Analysis,andData BaseTechnologies PrestonJohnson 114 ComparisonofFaultDetectionTechniquesforanOceanTurbine MustaphaMjit,Pierre-PhilippeJ.Beaujean,DavidJ.Vendittis 123 ComparisonofParallelandSingleNeuralNetworksinHeartArrhythmiaDetectionbyUsingECGSignalAnalysis EnsiehSadatHosseiniRooteh,YouminZhang,ZhigangTian 134 ConditionBasedMaintenanceOptimizationforMulti-componentSystemsCostMinimization ZhigangTian,YouminZhang,JialinCheng 143 CostComparisonofMaintenancePolicies LeMinhDuc,TanCherMing 149 DecisionandFusionforDiagnosticsofMechanicalComponents RenataKlein,EduardRudyk,EyalMasad 159 DefectsourcelocationofanaturaldefectonahighspeedrollingelementbearingwithAcousticEmission BEftekharnejad,A.Addali,DMba 168 DerivingBayesianClassifiersfromFlightDatatoEnhanceAircraftDiagnosisModels DanielL.C.Mack,GautamBiswas,XenofonD.Koutsoukos,DinkarMylaraswamy,GeorgeD.Hadden 175 iii AnnualConferenceofthePrognosticsandHealthManagementSociety,2011 DesignforFaultAnalysisUsingMulti-partite,Multi-attributeBetweennessCentralityMeasures Tsai-ChingLu,YiluZhang,DavidL.Allen,MutasimA.Salman 190 DistributedDamageEstimationforPrognosticsbasedonStructuralModelDecomposition MatthewDaigle,AnibalBregon,IndranilRoychoudhury 198 ExperimentalPolymerBearingHealthEstimationandTestStandBenchmarkingforWaveEnergyConverters MichaelT.Koopmans,StephenMeicke,IremY.Tumer,RobertPaasch 209 ExperimentswithNeuralNetworksasPrognosticsEnginesforPatientPhysiologicalSystemHealthManagement PeterK.Ghavami,KailashKapur 222 ExploringtheModelDesignSpaceforBatteryHealthManagement BhaskarSaha,PatrickQuach,KaiGoebel 231 FaultDiagnosisinAutomotiveAlternatorSystemUtilizingAdaptiveThresholdMethod AliHashemi,PierluigiPisu 239 Fault-TolerantTrajectoryTrackingControlofaQuadrotorHelicopterUsingGain-ScheduledPIDandModelReference AdaptiveControl ImanSadeghzadeh,AnkitMehta,YouminZhang,Camille-AlainRabbath 247 FeatureSelectionandCategorizationtoDesignReliableFaultDetectionSystems H.Senoussi,B.Chebel-Morello,M.Denaï,N.Zerhouni 257 From measurements collection to remaining useful life estimation: defining a diagnostic-prognostic frame for optimal maintenanceschedulingofchokevalvesundergoingerosion GiulioGola,BentH.Nystad 267 GearHealthThresholdSettingBasedOnaProbabilityofFalseAlarm EricBechhoefer,DavidHe,PaulaDempsey 275 GearboxVibrationSourceSeparationbyIntegrationofTimeSynchronousAveragedSignals GuicaiZhang,JoshuaIsom 282 HealthMonitoringofanAuxiliaryPowerUnitUsingaClassificationTree WlamirO.L.Vianna,JoaoP.P.Gomes,RobertoK.H.Galvao,TakashiYoneyama,JacksonP.Matsuura 293 IdentificationofCorrelatedDamageParametersunderNoiseandBiasUsingBayesianInference DawnAn,Joo-HoChoi,NamH.Kim 300 IntegratingProbabilisticReasoningandStatisticalQualityControlTechniquesforFaultDiagnosisinHybridDomains BrianRicks,CraigHarrison,OleMengshoel 310 InvestigatingtheEffectofDamageProgressionModelChoiceonPrognosticsPerformance MatthewDaigle,IndranilRoychoudhury,SriramNarasimhan,SankalitaSaha,BhaskarSaha,KaiGoebel 323 Investigationontheopportunitytointroduceprognostictechniquesinrailwaysaxlesmaintenance MattiaVismara 334 Lithium-ionBatteryStateofHealthEstimationUsingAh-VCharacterization DanielLe,XidongTang 361 Model-BasedPrognosticsUnderNon-stationaryOperatingConditions MatejGašperin,PavleBoškoski,DaniJuricˇic´ 368 ModelingwavepropagationinSandwichCompositePlatesforStructuralHealthMonitoring V.N.Smelyanskiy,V.Hafiychuk,D.G.Luchinsky,J.Miller,C.Banks,R.Tyson 375 OnlineEstimationofLithium-IonBatteryState-of-ChargeandCapacitywithaMultiscaleFilteringTechnique ChaoHu,ByengD.Youn,JaesikChung,TaejinKim 385 Optimizationoffatiguemaintenancestrategiesbasedonprognosisresults YibingXiang,YongmingLiu 398 PhysicsBasedPrognosticHealthManagementforThermalBarrierCoatingSystem AmarKumar,BhavayaSaxena,AlkaSrivastava,AlokGoel 409 PhysicsbasedPrognosticsofSolderJointsinAvionics AvisekhBanerjee,AshokK.Koul,AmarKumar,NishithGoel 419 iv AnnualConferenceofthePrognosticsandHealthManagementSociety,2011 Pointprocessesforbearingfaultdetectionundernon-stationaryoperatingconditions PavleBoškoski,DaniJuricˇic´ 427 PowerCurveAnalyticforWindTurbinePerformanceMonitoringandPrognostics OnderUluyol,GirijaParthasarathy,WendyFoslien,KyusungKim 435 PrognosticsofPowerMOSFETsunderThermalStressAcceleratedAgingusingData-DrivenandModel-BasedMethod- ologies JoséR.Celaya,AbhinavSaxena,SankalitaSaha,KaiGoebel 443 StructuralIntegrityAssessmentUsingIn-SituAcousticEmissionMonitoring MasoudRabiei,MohammadModarres,PaulHoffman 453 StudyonMEMSboard-levelpackagereliabilityunderhigh-Gimpact JiuzhengCui,BoSun,QiangFeng,ShengKuiZeng 463 SymbolicDynamicsandAnalysisofTimeSeriesDataforDiagnosticsofadc-dcForwardConverter GregoryBower,JeffreyMayer,KarlReichard 469 UsingtheValidatedFMEAtoUpdateTroubleShootingManuals: aCaseStudyofAPUTSMRevision ChunshengYang,SylvainLétourneau,MarvinZaluski 479 Utilizing Dynamic Fuel Pressure Sensor For Detecting Bearing Spalling and Gear Pump Failure Modes in Cummins PressureTime(PT)Pumps J.ScottPflumm,JeffC.Banks 490 Poster Papers ADiscussionofthePrognosticsandHealthManagementAspectsofEmbeddedConditionMonitoringSystems RogerI.Grosvenor,PaulW.Prickett 502 ***(no license)A new method of bearing fault diagnostics in complex rotating machines using multi-sensor mixtured hiddenMarkovmodels Z.S.Chen,Y.M.Yang,Z.Hu,Z.X.Ge 510 APrognosticHealthManagementBasedFrameworkforFault-TolerantControl DouglasW.Brown,GeorgeJ.Vachtsevanos 516 DamageIdentificationinFrameStructures,UsingDamageIndex,BasedonH2-Norm MahdiSaffari,RaminSedaghati,IonStiharu 527 EnhancedMultivariateBasedApproachforSHMUsingHilbertTransform RafikHajrya,NazihMechbal,MichelVergé 532 FaultDetectioninNonGaussianProblemsUsingStatisticalAnalysisandVariableSelection JoãoP.P.Gomes,BrunoP.Leão,RobertoK.H.Galvão,TakashiYoneyama 540 Fleet-widehealthManagementArchitecture ***(nolicense,othertextthere)MaximeMonnin,AlexandreVoisin,Jean-BaptisteLéger,BenoitIung 547 Improvingdata-drivenprognosticsbyassessingpredictabilityoffeatures KamranJaved,RafaelGouriveau,RyadZemouri,NoureddineZerhouni 555 IntegratedRobustFaultDetection,DiagnosisandReconfigurableControlSystemwithActuatorSaturation JinhuaFan,YouminZhang,ZhiqiangZheng 561 MultipleFaultDiagnosticStrategyforRedundantSystem YangPeng,QiuJing,LiuGuanjun,LvKehong 572 OnlineAbnormalityDiagnosisforreal-timeImplementationonTurbofanEnginesandTestCells JéroˇmeLacaille,ValerioGerez 579 ProficyAdvancedAnalytics: aCaseStudyforRealWorldPHMApplicationinEnergy SubratNanda,XiaohuiHu 588 Author Index 595 v AnnualConferenceofthePrognosticsandHealthManagementSociety,2011 vi AnnualConferenceofthePrognostics a ndHealthManagementSociety,2011 A Bayesian Probabilistic Approach to Improved Health Management of Steam Generator Tubes Kaushik Chatterjee and Mohammad Modarres Center for Risk and Reliability, University of Maryland, College Park, MD, 20742, USA [email protected] [email protected] ABSTRACT between 1975 and 2000. One such incident occurred in the North Anna power station in 1987 when the plant reached Steam generator tube integrity is critical for the safety and its 100% capacity (US Nuclear Regulatory Commission, operability of pressurized water reactors. Any degradation 1988). The cause of tube rupture was found to be fatigue, and rupture of tubes can have catastrophic consequences, caused by combination of alternating stresses resulting from e.g., release of radioactivity into the atmosphere. Given the flow-induced tube vibration and flaws resulting from risk significance of steam generator tube ruptures, it is denting of tubes at support plates. necessary to periodically inspect the tubes using nondestructive evaluation methods to detect and Given the risk significance of SGTRs, it is absolutely characterize unknown existing defects. To make accurate necessary to periodically inspect the tubes using estimates of defect size and density, it is essential that nondestructive evaluation methods in order to detect and detection uncertainty and measurement errors associated quantify the severity of unknown existing defects.1 All with nondestructive evaluation methods are characterized nondestructive evaluation methods have detection properly and accounted for in the evaluation. In this paper uncertainty and measurement errors associated with them we propose a Bayesian approach that updates prior that are a result of test equipment complexity, defect knowledge of defect size and density with nondestructive attributes, as well as human error. These uncertainties and evaluation data, accounting for detection uncertainty and errors need to be characterized properly and accounted for measurement errors. An example application of the while estimating the size and density of defects. proposed approach is then demonstrated for estimating A defect of a given size might be detected only a certain defect size and density in steam generator tubes using eddy percentage of the time (out of total attempts during current evaluation data. The proposed Bayesian probabilistic nondestructive testing) depending on factors such as, noise approach helps improve health management of steam level, test probe sensitivity, test equipment repeatability and generator tubes, thereby enhancing the overall safety and human error. Hence, a defect has an associated probability operability of pressurized water reactors. of detection, which can be defined as the probability the inspection will detect the defect of true size, , and is denoted by POD (Kurtz, Heasler, & Anderso(cid:1)n, 1992). 1. INTRODUCTION The data from w(cid:2)h(cid:1)i(cid:3)ch POD curves are generated can be categorized into two types: qualitative data, i.e., hit/miss; Pressurized water reactors (PWR) use heat produced from and quantitative data, i.e., signal response amplitude nuclear fission in the reactor core to generate electricity. In ( ), where is signal response. The hit/miss data type the process of generating electricity, steam generators (SG) is(cid:1)(cid:4) (cid:6)b(cid:7)a.s(cid:1)ed on a (cid:1)b(cid:4)i nary process, i.e., whether a defect is play an important role by keeping the reactor core at a safe detected or not detected. The POD for this data type is temperature and acting as the primary barrier between calculated as the ratio of the number of successful detection radioactive and non-radioactive sides of a nuclear power over the total number of inspections performed for a plant. Since SG tubes play such an important role, any particular defect size, and is called the averaged POD. degradation and rupture in the tubes can be catastrophic Hit/miss data are obtained from test equipments such as (Chatterjee & Modarres, 2011). According to the US Sonic IR, and are very subjective in nature depending on Nuclear Regulatory Commission (2010), there have been 10 operator experience (Li & Meeker, 2008), which induces steam generator tube rupture (SGTR) occurrences in the US uncertainty in the values of the POD. A logistic function is Chatterjee, K. et al. This is an open-access article distributed under the 1 In this paper defect may indicate a crack, flaw, pit, or any other terms of the Creative Commons Attribution 3.0 United States License, degradation in a structural component. Size may refer to either through- which permits unrestricted use, distribution, and reproduction in any wall depth or surface length of a defect, unless specified. Density refers to medium, provided the original author and source are credited. number of defects observed per unit volume. 1 [paper1] AAnnnnuuaall CCoonnffeerreennccee ooff tthhee PPrrooggnnoossttiiccss aanndd HHeeaalltthh MMaannaaggeemmeenntt SSoocciieettyy,, 22001111 found to best-fit hit/miss data for modeling POD (Jenson, or random variation in measured values (measurement Mahaut, Calmon & Poidevin, 2010). uncertainty). The other type of POD data is more continuous in nature In the past, there have been efforts to model defect severity and is a measure of the amplitude of signal response in structural components considering nondestructive recorded by the nondestructive test equipment, e.g., evaluation uncertainties. Celeux, Persoz, Wandji, and Perrot ultrasonic or eddy current. In the signal response data-based (1999) describe a method to model defects in PWR vessels POD estimation method, the most important parameters are considering the POD and random error in measurements. the inspection threshold (noise level) and the decision Yuan, Mao, and Pandey (2009) followed the idea of Celeux threshold. The inspection threshold is chosen to account for et al. (1999), to propose a probabilistic model for pitting the noise indications by test equipment, and responses corrosion in SG tubes considering the POD and random above this threshold are considered for detection/non- error of the eddy current measurements. However, both detection decisions. Decision threshold is often based on Celeux et al. (1999) and Yuan et al. (2009) did not consider previous field inspections and knowledge of the noise the effect of systematic error or bias in measured defect distribution, laboratory experience, and operator experience. sizes. Also, the POD has not been adjusted for measurement The POD curve for signal response data type is modeled errors in their models. Further, they did not consider using a cumulative log-normal distribution function uncertainties in the values of the POD, which can affect the (Department of Defense, 1999; Jenson, et al., 2010), by defect severity estimates considerably. determining the cumulative probability of responses (defect This paper addresses some of the shortcomings of existing signals) greater than the decision threshold. The selection of literature and develops a Bayesian probabilistic approach for decision threshold also determines the probability of false modeling defect severity (size and density) in structural call (or false positive).2 Hence, there is lot of uncertainty components considering the detection uncertainty (i.e., POD associated with the values chosen for inspection and and associated uncertainty) and measurement errors (and decision threshold, which lead to uncertainties in the values associated uncertainty) associated with nondestructive of the POD. In some cases, the signal response data is also evaluation methods. The paper then presents example converted into hit/miss data (Jenson et al., 2010) by using application of the proposed approach for estimating defect the decision threshold and averaged POD values are severity in SG tubes using eddy current evaluation data. estimated, which are then fitted into a logistic function. The precision and accuracy of nondestructive test equipment, and also the techniques used to analyze and 2. PROPOSED BAYESIAN APPROACH process the test results can contribute to measurement errors. For example, large volume of sensor data (such as The proposed Bayesian approach updates prior knowledge ultrasound or digital images) are filtered, smoothed, of defect size and density with nondestructive evaluation reduced, and censored into another form by subjectively data, considering the POD, measurement errors (systematic accounting for only certain features of the data. Also, often and random), and associated uncertainties, to infer the measurement models are used to convert the form of a posterior distributions of defect size and density. The measured or observed data into the corresponding value of combined effect of POD, measurement errors, and the reality of interest (i.e., defect size). Uncertainties associated uncertainties on measured defect sizes is captured associated with data processing, model selection and human by a likelihood function. In this section, models for error can contribute to measurement errors. Measurement measurement errors and POD function will be first defined; error is defined as the difference between the measured and then the defect severity models will be presented, followed the true value of a defect size. There are two components of by the likelihood functions and Bayesian inference measurement error: systematic (bias) error and random equations. (stochastic) error (Jaech, 1964; Hofmann, 2005). Systematic The analysis of measurement error is based on assessing the error or bias is a consistent and permanent deflection in the deviation of the measured defect size from the actual or true same direction from the true value (Hofmann, 2005). defect size, as shown in Eq. (1): Systematic error (bias) may indicate overestimation (positive bias) or underestimation (negative bias). In most nondestructive measurements, small defects are oversized (cid:12) and large defects are undersized (Kurtz et al., 1992; Wang (cid:9)(cid:10) (cid:11)(cid:1) (cid:13)(cid:1) (cid:2)1(cid:3) where, is the measurement error, is measured and is & Meeker, 2005). Random error arises due to the scattering (cid:12) the tru(cid:9)e(cid:10) defect size. Generally (cid:1)a linear regress(cid:1)ion 2 A nondestructive test equipment response interpreted as having detected a relationship of the form shown in Eq. (2) is used to model flaw but associated with no known flaw at the inspection location measurement error (Kurtz et al., 1992; Jaech, 1964). (Department of Defense, 1999). (cid:12) (cid:1) (cid:11)(cid:15)(cid:1)(cid:16)(cid:17)(cid:16)(cid:18)(cid:2)0,(cid:21)(cid:22)(cid:3) (cid:2)2(cid:3) 2 2 [pape r1] AAnnnnuuaall CCoonnffeerreennccee ooff tthhee PPrrooggnnoossttiiccss aanndd HHeeaalltthh MMaannaaggeemmeenntt SSoocciieettyy,, 22001111 where, and are regression coefficients obtained through The marginal POD independent of random variables, and a regres(cid:15)sion an(cid:17)alysis of , and is the random error , can be expressed as shown in Eq. (8), w@here, (cid:12) in measurement (scatterin(cid:1)g o(cid:6)f(cid:7) .th(cid:1)e data)(cid:18), which is assumed to (cid:21)ABC represents the PDF of random variable, . follow a normal distribution with mean zero and standard (cid:15)(cid:2)(cid:21)ABC(cid:3) (cid:21)ABC deviation (function of defect size). The regression coefficients(cid:21) (cid:22)( ) are jointly measure of systematic error =>?(cid:2)(cid:1)(cid:3)(cid:11) 5 5=>?(cid:2)(cid:1)|@,(cid:21)ABC(cid:3)H(cid:2)@(cid:3)(cid:15)(cid:2)(cid:21)ABC(cid:3);@;(cid:21)ABC (cid:2)8(cid:3) or bias in me(cid:15)a s&ur(cid:17)ements. Distributions of bias parameters +JKLI represent epistemic uncertainty in the chosen measurement The likelihood function for detecting defect of true size, , error model. From Eqs. (1) and (2), the measurement error given that the defect is detected , can then b(cid:1)e can be expressed as: expressed as shown in Eq. (9) (Celeux(cid:2)? et(cid:11) al1., (cid:3)1999): (cid:29)(cid:30)(cid:22)(cid:31) (cid:22)!"#(cid:10) $%%#% 2(cid:2)(cid:1)|4(cid:3)O=>?(cid:2)(cid:1)(cid:3) (cid:9)(cid:10) (cid:11)(cid:2)(cid:25)(cid:15)(cid:26)(cid:26)(cid:13)(cid:26)(cid:27)1(cid:3)(cid:26)(cid:1)(cid:26)(cid:26)(cid:16)(cid:28)(cid:17)(cid:16) (cid:18)(cid:25)(cid:2)(cid:26)0(cid:27),(cid:21)(cid:26)(cid:22)(cid:28)(cid:3) (cid:2)3(cid:3) N(cid:2)(cid:1)|? (cid:11)1(cid:3)(cid:11) (cid:2)9(cid:3) Measurement error can then be expressed as a function of ="(cid:2)4(cid:3) where, is the marginal POD that is a function of measured defect size using Eqs. (1) and (3) as: defect s=iz"e(cid:2) 4d(cid:3)istribution parameters only (independent of defect size), and can be expressed as: (cid:29)(cid:30)(cid:22)(cid:31) (cid:22)!"#(cid:10) $%%#% (cid:25)(cid:15)(cid:26)(cid:26)(cid:13)(cid:26)(cid:26)1(cid:27)(cid:26)(cid:26)(cid:12)(cid:26)(cid:26)(cid:28)(cid:17) (cid:18)(cid:25)(cid:2)(cid:26)0(cid:27),(cid:21)(cid:26)(cid:22)(cid:28)(cid:3) S (cid:9)(cid:10) (cid:11)' ((cid:1) (cid:16) (cid:16) (cid:2)4(cid:3) (cid:15) (cid:15) (cid:15) The probability density function (PDF) of the measurement ="(cid:2)4(cid:3)(cid:11)Pr(cid:2)? (cid:11)1(cid:3)(cid:11)5=>?(cid:2)(cid:1)(cid:3)2(cid:2)(cid:1)|4(cid:3);(cid:1) (cid:2)10(cid:3) error can then be defined using a normal distribution with T During nondestructive measurements true defect sizes are mean as the bias, , standard deviation as that of random unknown, while the only known quantities are the measured error, , and meas*ur(cid:22)ement error as random variable. +, defect sizes and number of detections. The likelihood (cid:10) function of true defect sizes corresponding to measurements consisting of exact defect sizes (using Eq. 9) considering (cid:21)(cid:22) (cid:12) -(cid:2)(cid:9)(cid:10)(cid:3)(cid:11)./*(cid:22), 0 (cid:2)5(cid:3) measurement Uer$rors can be represented as: (cid:15) Assume that true defect size, , is treated as random variable with the PDF, , w(cid:1)here is the vector of the !Z(cid:12) ePrDroFr pcaarna tmheente rbse. eDxepfreecst2s es(cid:2)id(cid:1)z |ea4 sP (cid:3)sDhoFw cno nins4i dEeqr.i n(6g) .m easurement N (cid:2) (cid:1) $ V(cid:22)WE|4 (cid:3)(cid:11)X="(cid:2)14(cid:3) Y ! Z (cid:12) [ (cid:30) \ ] 9 5: = >?(cid:2)(cid:1)(cid:30)(cid:12)(cid:13)(cid:9) (cid:10)(cid:3)26(cid:2)(cid:1)(cid:30)(cid:12)(cid:13)(cid:9) (cid:10)(cid:3)|48-(cid:2)(cid:9)(cid:10) (cid:3) ; ((cid:9)1(cid:10)1) Nondestructive measurements are in most cases interval or left censored, in which case the likelihood function of true (cid:12) defect sizes corresponding to measurements consisting of 2(cid:2)(cid:1)|4(cid:3)(cid:11) 526(cid:2)(cid:1) (cid:13)(cid:9)(cid:10)(cid:3)748-(cid:2)(cid:9)(cid:10)(cid:3);(cid:9)(cid:10) (cid:2)6 (cid:3) defects within the interval (or in a left censored 9: (cid:12) Uin(cid:30)t!eEr,^val) (Cook, Duckwor_tEhF, Kaiser, Meeker & Stephenson, All the defects in a structure are not detected during 2003), can be expressed as shown in Eq. (12). nondestructive testing. The detection of a defect depends on its size and is represented by the POD curve. The POD of a di ne fEeqc.t (o7f) :s ize, (cid:1), can be represented by a function as shown N^(cid:2)(cid:1)(cid:30)!E|4(cid:3)(cid:11) `="1(cid:2)4(cid:3)5(cid:22)(cid:22)a(cid:12) ba(cid:12)c95:=>?(cid:2)(cid:1) (cid:12)(cid:13)(cid:9)(cid:10)(cid:3)26(cid:2)(cid:1) (cid:12)(cid:13)(cid:9)(cid:10)(cid:3)|48- (cid:2)(cid:9)(cid:10)(cid:3);(cid:9)(cid:10); (cid:1) (cid:12) d(!1e(cid:12)f2g,a) Therefore, the likelihood function of true defect sizes = >?(cid:2)(cid:1)|@,(cid:21)ABC(cid:3)(cid:11)D(cid:2)(cid:1),@,(cid:1)EF(cid:3)(cid:16)(cid:18)ABC(cid:2)0,(cid:21)ABC(cid:3) (cid:2)7(cid:3) corresponding to total measurements consisting of defect where, is the POD function, is the detection size intervals each with certain number of defects ((cid:15) in thresholDd(cid:2),(cid:1) ,@ i,s(cid:1) EvFe(cid:3)ctor of parameters of (cid:1)thEFe POD function, interval), and exact defect sizes can then be exUp(cid:30)(cid:12)!reE,s^s ed and is@ the random error, which represents uncertainty a_EsF s hown in Eq. (1U3$(cid:12)). in th(cid:18)eA BCPOD data and is assumed to follow a normal distribution with mean zero and standard deviation (function of true defect size). The POD function is sele(cid:21)cAtBeCd N(cid:2)(cid:1)|4(cid:3)(cid:11)∏(cid:10)^ \]iAj](cid:2)k(cid:3)l(cid:22)(cid:22)a(cid:12)a(cid:12)b cl9:=>?(cid:2)(cid:1) (cid:12)(cid:13)(cid:9)(cid:10)(cid:3)26(cid:2)(cid:1) (cid:12)(cid:13)(cid:9)(cid:10)(cid:3)|48 -(cid:2)(cid:9)(cid:10)(cid:3);(cid:9)(cid:10); (cid:1) (cid:12) m ! e(cid:12)fg,a based on the type of data, e.g., hit/miss or signal response as discussed in Section 1. Joint distribution of the parameters 1 Un(cid:12) (cid:12) (cid:12) (13) of the POD function, , represents the epistemic OX=;(cid:2)4(cid:3)YUn(cid:12)∏o(cid:11)1l(cid:9)(cid:15)=>?(cid:2)(cid:1)o(cid:13)(cid:9)(cid:15)(cid:3)26(cid:2)(cid:1)o(cid:13)(cid:9)(cid:15)(cid:3)|48-(cid:2)(cid:9)(cid:15)(cid:3);(cid:9)(cid:15) uncertainty associated withH (cid:2)th@e(cid:3) choice of the POD function. 3 3 [pape r1] AAnnnnuuaall CCoonnffeerreennccee ooff tthhee PPrrooggnnoossttiiccss aanndd HHeeaalltthh MMaannaaggeemmeenntt SSoocciieettyy,, 22001111 The posterior defect size distribution parameters can then be where, and are parameters of gamma distribution. estimated using Bayesian inference as: Then thye] posteryiozr distribution of defect density can be expressed as shown in Eq. (19). N(cid:2)?(cid:1)q(cid:1)|4(cid:3)pT(cid:2)4(cid:3) p ] (cid:2)4|?(cid:1)q(cid:1)(cid:3)(cid:11)lkN(cid:2)?(cid:1)q(cid:1)|4(cid:3)pT(cid:2)4(cid:3);4 (cid:2)14(cid:3) p](cid:2)u(cid:3)(cid:11)-(cid:1)(cid:15)(cid:15)(cid:1)(cid:2)u|t(cid:16)y],U(cid:16)yz(cid:3) (cid:2)19(cid:3) A MATLAB routine was developed to implement this entire where, is posterior distribution of defect size Bayesian approach for estimating defect severity in parametper]s(cid:2) 4|a?n(cid:1)d q(cid:1)(cid:3) is prior distribution of the structural components. The proposed Bayesian approach parameters. The popsTt(cid:2)e4rio(cid:3)r defect size parameters obtained considers systematic (bias) and random error in from Bayesian inference can then be used to estimate the nondestructive measurements; suitably adjusts measurement corresponding marginal POD values (Eq. 10). errors in POD; considers uncertainty in POD values; The likelihood of observing number incorporates prior knowledge of defect size and density; of defects given actualU (cid:12)n (cid:2)u(cid:11)mUb$(cid:12)er(cid:16) o∑f(cid:10)^ \d]eUfe(cid:30)(cid:12)!cEt,s^ (cid:3)can be provides a framework for updating probability distributions expressed by a biUnomial function (detection process is of defect model parameters when new data become binary, i.e., either detection or no detection), as shown by available; and is applicable to exact, interval, and censored Eq. (15): measurements. (cid:12) U !(cid:12) !s!(cid:12) 3. APPLICATION OF PROPOSED BAYESIAN N(cid:2)U |U(cid:3)(cid:11)/ (cid:12)0X="(cid:2)4(cid:3)Y X1(cid:13)="(cid:2)4(cid:3)Y (cid:2)15(cid:3) APPROACH TO EDDY CURRENT DATA U where, is the marginal POD value corresponding to An example application of the proposed Bayesian approach posterio=r" (cid:2)d4ef(cid:3)ect size parameters. In Eq. (15), the actual is presented in this section for estimating flaw severity in number of defects, , is unknown whereas and are (cid:12) SG tubes using eddy current measurements of flaw sizes known. The actual nUumber of defects can bUe estima=t"e(cid:2)d4 u(cid:3)sing (through-wall depth). In this section, we first model POD Bayesian inference as shown in Eq. (16): and measurement error for eddy current evaluation using available data from literature, and then use the proposed (cid:12) Bayesian approach to estimate the posterior distributions of p](cid:2)U|U(cid:12)(cid:3)(cid:11)∑N!(cid:2)NU(cid:2)U|(cid:12)U|(cid:3)Up(cid:3)Tp(cid:2)TU(cid:2)(cid:3)U(cid:3) (cid:2)16(cid:3) flaw size and density. where, is posterior distribution of actual number The eddy current measurement error is assessed in this of defecpts] (cid:2)gUiv|Ue(cid:12)n(cid:3) the observation, , and is the prior paper by a Bayesian regression approach (Azarkhail & distribution of number of defects.U T(cid:12)he prpioTr(cid:2) Udi(cid:3)stribution of Modarres, 2007) in light of available data from literature number of defects can be estimated from a Poisson function, (Kurtz, Clark, Bradley, Bowen, Doctor, Ferris & Simonen, which gives the likelihood of observing total number of 1990). The regression result is illustrated by Figure 1 with defects in a volume , given prior defect dUensity as shown the 50% regression line representing the bias corresponding in Eq. (17). Here tPoisson distribution is useud because to mean values of the parameters and of Eq. (3). The defects are assumed to occur with the same average 95% uncertainty bounds of Figur(cid:15)e 1 co(cid:17)rresponds to the intensity and independent of each other. random error with a constant standard deviation, . The parameters and obtained through Bayesian reg(cid:21)ression were then (cid:15)u,s(cid:17)ed in(cid:21) Eq. (5) to estimate the PDF of ! measurement error as a function of measured flaw size. svw(cid:2)ut(cid:3) pT(cid:2)U(cid:3)(cid:11)n (cid:2)17(cid:3) U! In order to derive the POD model, it was assumed in this The posterior distribution of actual number of defects (Eq. paper that eddy current signal response data were converted 16) can then be used to obtain the posterior defect density. into equivalent hit/miss. The POD curve can then be The standard conjugate prior employed for Poisson expressed by a logistic function of the form as shown in Eq. distribution likelihood (Eq. 17) is a two-parameter gamma (20) (Yuan et al., 2009): distribution (Simonen, Doctor, Schuster, & Heasler, 2003), in which case the posterior has the same functional form as the gamma distribution. Assume that prior distribution of ]}$b~c~(cid:127) defect density is: =>?(cid:2)(cid:1)|{],{z,(cid:1)EF(cid:3)(cid:11)|1(cid:13)]}$~c(cid:2),b~(cid:127)b,g€(cid:3)(cid:16)(cid:18)ABC(cid:2)0,(cid:21)ABC(cid:3) 2(cid:129)‚ (cid:1)ƒ(cid:1)EF… 0 (cid:129)qDn‚ „ (o2(cid:7)n0 ) where, is flaw size, is threshold size for detection, pT (cid:2) u (cid:3)(cid:11)-(cid:1)(cid:15)(cid:15)(cid:1)(cid:2)u|y],yz(cid:3) (cid:2)18(cid:3) raanndd o{mz (cid:1) aererr olro,g iswtihci cfhu(cid:1) nEiFcst ioans spuamraemd etteor s,f oalnlodw (cid:18) AaB Cn iosr mt{ha]el distribution with mean zero and standard deviation . A (cid:21)ABC 4 4 [pape r1]

Description:
Kamran Javed, Rafael Gouriveau, Ryad Zemouri, Noureddine Zerhouni. 555 Nuclear Regulatory Commission (2010), there have been 10 One such incident occurred in the .. is presented in this section for estimating flaw severity in estimated using Eq. (19) for a given volume corresponding.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.