ebook img

Proceedings of International congress of mathematicians PDF

1727 Pages·2006·7.666 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Proceedings of International congress of mathematicians

Contents 1 Logicandfoundations RodDowney Algorithmicrandomnessandcomputability ................................ 1 ItayNeeman Determinacyandlargecardinals .......................................... 27 MichaelRathjen Theartofordinalanalysis ............................................... 45 ThomasScanlon Analyticdifferencerings ................................................. 71 SimonThomas Borelsuperrigidityandtheclassificationproblemforthetorsion-free abeliangroupsoffiniterank .............................................. 93 2 Algebra WilliamCrawley-Boevey Quiveralgebras,weightedprojectivelines,andtheDeligne–Simpson problem ................................................................ 117 MarcusduSautoy*andFritzGrunewald* Zetafunctionsofgroupsandrings ........................................ 131 BernhardKeller Ondifferentialgradedcategories ......................................... 151 RaphaëlRouquier Derivedequivalencesandfinitedimensionalalgebras ....................... 191 MarkSapir Algorithmicandasymptoticpropertiesofgroups ........................... 223 ÁkosSeress Aunifiedapproachtocomputationswithpermutation andmatrixgroups ....................................................... 245 AgataSmoktunowicz Someresultsinnoncommutativeringtheory ............................... 259 3 Numbertheory ManjulBhargava Highercompositionlawsandapplications ................................. 271 ∗ Incaseofseveralauthors,invitedspeakersaremarkedwithanasterisk. vi Contents Ching-LiChai HeckeorbitsasShimuravarietiesinpositivecharacteristic .................. 295 HenriDarmon Heegnerpoints,Stark–Heegnerpoints,andvaluesofL-series ............... 313 KazuhiroFujiwara GaloisdeformationsandarithmeticgeometryofShimuravarieties ........... 347 BenGreen GeneralisingtheHardy–Littlewoodmethodforprimes ...................... 373 GérardLaumon AspectsgéométriquesduLemmeFondamental deLanglands-Shelstad ................................................... 401 PhilippeMichel*andAkshayVenkatesh Equidistribution,L-functionsandergodictheory: onsomeproblemsofYu.Linnik .......................................... 421 WiesławaNizioł p-adicmotiviccohomologyinarithmetic .................................. 459 ChristopherSkinner*andEricUrban* VanishingofL-functionsandranksofSelmergroups ....................... 473 VinayakVatsal SpecialvaluesofL-functionsmodulop ................................... 501 4 Algebraicandcomplexgeometry ValeryAlexeev Higher-dimensionalanaloguesofstablecurves ............................. 515 Jean-BenoîtBost Evaluationmaps,slopes,andalgebraicitycriteria .......................... 537 TomBridgeland Derivedcategoriesofcoherentsheaves .................................... 563 LawrenceEin*andMirceaMusta¸taˇ Invariantsofsingularitiesofpairs ......................................... 583 TomGraber Rationalcurvesandrationalpoints ........................................ 603 Jun-MukHwang Rigidityofrationalhomogeneousspaces .................................. 613 TomohideTerasoma Geometryofmultiplezetavalues ......................................... 627 YuriTschinkel Geometryovernonclosedfields .......................................... 637 JarosławWłodarczyk AlgebraicMorsetheoryandtheweakfactorizationtheorem ................. 653 Contents vii 5 Geometry ChristophBöhmandBurkhardWilking* Manifoldswithpositivecurvatureoperatorsarespaceforms ................. 683 SimonBrendle Ellipticandparabolicproblemsinconformalgeometry ..................... 691 KoHonda Thetopologyandgeometryofcontactstructuresin dimensionthree ......................................................... 705 MichaelKapovich Generalizedtriangleinequalitiesandtheirapplications ..................... 719 BruceKleiner Theasymptoticgeometryofnegativelycurvedspaces: uniformization,geometrizationandrigidity ................................ 743 FrançoisLalonde Lagrangiansubmanifolds: fromthelocalmodeltotheclustercomplex ....... 769 XiaoboLiu Gromov–Witteninvariantsandmodulispacesofcurves ..................... 791 ToshikiMabuchi Extremalmetricsandstabilitiesonpolarizedmanifolds ..................... 813 GrigoryMikhalkin Tropicalgeometryanditsapplications .................................... 827 WilliamP.MinicozziII Embeddedminimalsurfaces ............................................. 853 Yong-GeunOh*andKenjiFukaya Floerhomologyinsymplecticgeometryandinmirrorsymmetry ............ 879 AntonioRos Properlyembeddedminimalsurfaceswithfinitetopology ................... 907 Chuu-LianTerng Applicationsofloopgroupfactorizationtogeometricsolitonequations ....... 927 6 Topology IanAgol FinitenessofarithmeticKleinianreflectiongroups ......................... 951 MartinR.Bridson Non-positivecurvatureandcomplexityforfinitelypresentedgroups ......... 961 MikhailKhovanov Linkhomologyandcategorification ....................................... 989 YairN.Minsky Curvecomplexes,surfacesand3-manifolds ............................... 1001 viii Contents FabienMorel A1-algebraictopology ................................................... 1035 KaoruOno DevelopmentinsymplecticFloertheory ................................... 1061 PeterOzsváth*andZoltánSzabó* HeegaarddiagramsandFloerhomology ................................... 1083 KarenVogtmann Thecohomologyofautomorphismgroupsoffreegroups .................... 1101 7 LiegroupsandLiealgebras RomanBezrukavnikov NoncommutativecounterpartsoftheSpringerresolution .................... 1119 AlexanderBraverman Spacesofquasi-mapsintotheflagvarietiesandtheirapplications ............ 1145 GuyHenniart OnthelocalLanglandsandJacquet–Langlandscorrespondences ............ 1171 NicolasMonod Aninvitationtoboundedcohomology ..................................... 1183 Bao-ChâuNgô FibrationdeHitchinetstructureendoscopiquedelaformule destraces .............................................................. 1213 EricM.Opdam Heckealgebrasandharmonicanalysis .................................... 1227 PeterSchneider Continuousrepresentationtheoryofp-adicLiegroups ..................... 1261 YehudaShalom ThealgebraizationofKazhdan’sproperty(T) .............................. 1283 DavidSoudry Rankin–Selbergintegrals,thedescentmethod,andLanglands functoriality ............................................................ 1311 BirgitSpeh Representationtheoryandthecohomologyofarithmeticgroups ............. 1327 TonnyA.Springer Someresultsoncompactificationsofsemisimplegroups .................... 1337 8 Analysis MarioBonk Quasiconformalgeometryoffractals ...................................... 1349 Contents ix SteveHofmann LocalTbtheoremsandapplicationsinPDE ............................... 1375 SergeyV.Konyagin AlmosteverywhereconvergenceanddivergenceofFourierseries ............ 1393 LindaPreissRothschild IteratedSegremappingsofrealsubmanifolds incomplexspaceandapplications ........................................ 1405 StanislavSmirnov Towardsconformalinvarianceof2Dlatticemodels ......................... 1421 EmilJ.Straube AspectsoftheL2-Sobolevtheoryofthe∂-Neumannproblem ............... 1453 VladimirN.Temlyakov Greedyapproximationswithregardtobases ............................... 1479 XavierTolsa Analyticcapacity,rectifiability,andtheCauchyintegral ..................... 1505 9 Operatoralgebrasandfunctionalanalysis FranckBarthe TheBrunn–Minkowskitheoremandrelatedgeometricand functionalinequalities ................................................... 1529 Bo’azKlartag Isomorphicandalmost-isometricproblemsinhigh-dimensional convexgeometry ........................................................ 1547 NarutakaOzawa Amenableactionsandapplications ........................................ 1563 MikaelRørdam StructureandclassificationofC∗-algebras ................................ 1581 StanislawJ.Szarek Convexity,complexity,andhighdimensions ............................... 1599 GuoliangYu Higherindextheoryofellipticoperatorsandgeometryofgroups ............ 1623 10 Ordinarydifferentialequationsanddynamicalsystems OlegN.Ageev Onspectralinvariantsinmodernergodictheory ............................ 1641 VitalyBergelson ErgodicRamseytheory: adynamicalapproachtostatictheorems ............ 1655 NikolaiChernovandDmitryDolgopyat* Hyperbolicbilliardsandstatisticalphysics ................................. 1679 x Contents RafaeldelaLlave Somerecentprogressingeometricmethodsintheinstabilityproblem inHamiltonianmechanics ............................................... 1705 ManfredEinsiedlerandElonLindenstrauss* Diagonalizableflowsonlocallyhomogeneousspacesandnumbertheory ..... 1731 Authorindex ............................................................... 1761 Algorithmic randomness and computability RodDowney Abstract. We examine some recent work which has made significant progress in out under- standingofalgorithmicrandomness,relativealgorithmicrandomnessandtheirrelationshipwith algorithmiccomputabilityandrelativealgorithmiccomputability. MathematicsSubjectClassification(2000). Primary68Q30,68Q15,03D15,03D25,03D28, 03D30. Keywords. Kolmogorovcomplexity,computability,degreesofunsolvability,prefix-freecom- plexity,lowness,incompressibility,martingales,computablyenumerable. 1. Introduction Inthelastfewyearswehaveseensomeveryexcitingprogressinourunderstanding of algorithmic randomness and its relationship with computability and complexity. Theseresultshavecenteredaroundaprogrammewhichattemptstoanswerquestions of the following form: when is one real more random than another? How should thisbemeasured? Howwouldsuchmeasuresofcalibrationrelatetoothermeasures of complexity of reals, such as the traditional measures of relative complexity like Turing degrees, which measure relative computability? These investigations have revealeddeepandhithertounexpectedpropertiesofrandomness,anti-randomnessand algorithmiccomplexity,aswellaspointingatanalogsinotherareas,andanswering questionsfromapparentlycompletelyunrelatedareas. InthispaperIwillattempttogiveabrief(andbiased)overviewofsomeofthemore recenthighlights. Iapologizeforignoringimportantworkrelatingthecollectionof randomstringswithcomplexitytheorysuchas[1],[2],andworkonrandomnessfor computablyenumerablesetssuchasKummer[48],[49],andMuchnikandPositelsky [71], purely for space reasons. This overview will be too short to give a complete accountofthealloftheprogress. Forafullerpicture,Ireferthereadertothelongsur- veysofDowney,Hirschfeldt,NiesandTerwijn[28],Downey[16],[15],[17],Terwijn [96]andtheupcomingmonographsDowneyandHirschfeldt[22]1,andNies[77]. Wewilllookatvariousmethodsofcalibrationbyinitialsegmentcomplexitysuch as those introduced by Solovay [89], Downey, Hirschfeldt, and Nies [26], Downey, 1Availableinprelimininaryformatwww.mcs.vuw.ac.nz/~downey. ProceedingsoftheInternationalCongress ofMathematicians,Madrid,Spain,2006 ©2006EuropeanMathematicalSociety 2 RodDowney Hirschfeldt, and LaForte [23], Downey [16], as well as other methods such as low- nessnotionsofKucˇeraandTerwijn[47],TerwijnandZambella[97],Nies[75],[76], Downey, Griffiths and Reid [21], and methods such as higher level randomness no- tionsgoingbacktotheworkofKurtz[50],Kautz[38],andSolovay[89],andother calibrationsofrandomnessbasedonchangingdefinitionsalongthelinesofSchnorr, computable, s-randomness, etc. Particularly fascinating is the recent work on low- ness,whichbeganwithDowney,Hirschfeldt,NiesandStephan,anddevelopedina seriesofdeeppapersbyNies[75],[76]andhisco-authors. 2. Preliminaries Since most of our results are concerned with effectiveness/computability, we as- sume that the reader is familiar with the basic facts concerning computability the- ory/recursiontheory. Thus,wewillregardcountablesetsaseffectivelycodedinthe natural numbers and consider effective processes on them as computable ones. For example, an effective prediction function would be classified according to it com- putability. We assume that the reader is also familiar with semi-computable (com- putably enumerable) processes such as the computably enumerable set coding the haltingproblem∅(cid:3) = {(e,x) : thee-thprogramhaltsoninputx}. Suchcomputable enumerableproblemscanberepresentedbysetsW definedasx ∈W iff∃yR(x,y), where R is a computable relation. We will call a set in the form ∃yR(x,y), (cid:2)0. If 1 N−Ais(cid:2)0,thenwesaythatAis(cid:3)0. IfAisboth(cid:2)0and(cid:3)0wesaythatAis(cid:4)0(and 1 1 1 1 1 thisisthesameasbeingcomputable). Thisprocesscanbeextendedtothearithmetical hierarchy. WewillsaythatAis(cid:2)0 iffthereisa(cid:3)0 relationRsuchthatx ∈Aiff n n−1 ∃yR(x,y). (Equivalently,x isinAiff∃y∀z... (withnalternations)Q(x,y,z,...) and Q computable.) Analogously, we can define (cid:3)0 and (cid:4)0. We will also assume n n thatthereaderisfamiliarwiththeprocessofrelativizationwhichmeansthatweput oracles(allowingfor“readonlymemory”)onourmachines. Theseoraclesallowfor computationsinwhichafinitenumberofeffectivelygeneratedmembershipqueries oftheoraclesetareallowed. Thus,forinstance,A(cid:3) ={(e,x):thee-thprogramhalts oninputxwhengivenoracleA}. ThisisthehaltingproblemrelativizedtoA,usually pronounced “A-jump”. If we classify sets under the preordering ≤T we will write A ≤T B tomeanthatmembershipofAcanbecomputedbyaprogramwithaccess toBasanoracle. (Hereweidentifysetswiththeircharacteristicfunctions,andhence as reals: members of Cantor space 2ω.) The equivalence classes of ≤T, which cal- ibratecountablesetsintoclassesof“equi-computability”arecalledTuringdegrees, afterthefamousAlanTuring. WeremarkthatthesimplestkindofTuringreductionis calledanm-reduction(formany-one)andisdefinedasfollows: A≤m B meansthat there is a computable function f such that x ∈ A iff f(x) ∈ B. Thus to figure out ifx isinAfromB,thealgorithmsimplysays: computef(x)andaskB iff(x)is inB. ItiseasytoshowthatforanycomputablyenumerablesetA,A ≤m ∅(cid:3),sothat thehaltingproblem∅(cid:3) ifm-complete, inthatitisthemostcomplicatedcomputably Algorithmicrandomnessandcomputability 3 enumerable set as measured by m-reducibility2. We remark that the relativization ofthehaltingproblembealgorithmicallyunsolvableisthatA(cid:3) (cid:8)≤T AforanysetA. Therelativizationofthehaltingproblemisintrinsicallytiedwiththehaltingproblem. Namely,∅(cid:3)(cid:3),whichisdefinedasthehaltingproblemgainedwiththehaltingproblem as an oracle is a natural (cid:2)0 set and it can compute any (cid:3)0 set and any (cid:2)0 set, and 2 2 2 similarlyfor∅(n+1). Anyothernotionsfromcomputabilityneededareintroducedincontext. Wealso refer the reader to Soare [86] for further background material in computability, and toLi–Vitanyi[56]orCalude[6]forgeneralbackgroundinalgorithmicrandomness. ω Inthispaper“real”willbeinterpretedasamemberofCantorspace2 withsub- basicclopensets[σ]={σα :α ∈2ω},forσ ∈2<ω.Thisspaceisequippedwiththe standardLebesguemeasure, where, forσ ∈ 2<ω, μ([σ]) = 2−|σ|.Therehavebeen investigationsonothermeasuresthantheuniformone,andonotherspaces(thelatter notably by Gács [34]), but space precludes a thorough discussion here. For Cantor space up to degree things, speaking loosely, it does not matter measure is used, so longasitisnotatomic. Finally,theinitialsegmentofarealα(orastring)oflengthn willbedenotedbyα (cid:2)n. 3. Threeapproachestorandomness Intermsofmeasureaanytworealsoccurwithprobabilityzero,yetwewouldarguethat arealα =01010101... wouldnotseemrandom. Howshouldweunderstandthis? 3.1. Martin-Löfrandomness. Thefirstauthortoattempttograpplewithtryingto “define”randomnesswasvonMises[101].VonMiseswasastatisticianandattempted todefinerandomnessintermsofstatisticallaws. Forinstance,hearguedthatarandom real should pass all statistical tests. Thus, he argued, if one “selected” from a real α = a0a1... somesubsequenceai0,ai1,..., thenlimn→∞ |{j:aij=1n∧1≤j≤n}| should be 1. Naturally, von Mises lacked the language needed to suggest which selection 2 rules should be considered. That awaited the development of computable function theory in the 1930s by Church and others, which then allowed us to argue that a randomrealshouldbe“computablystochastic”inthesenseofvonMises. Unfortunately,Waldandothersshowedthattherearesomesignificantproblems (seevanLambalgen[99]foradiscussion)withthisapproach,knownascomputable stochasticity. Here I refer the reader to Ambos-Spies [3], Merkle [62], [63], and Uspensky,SemenovandShen[98]. ThefirstreallyacceptableversionofvonMises ideawasdevelopedbyPerMartin-Löfin[60]. Hearguedthatanyeffectivestatistical 2Additionally,itmightseemthattheremightbevariousversionsofthehaltingproblemdependingofwhich programminglanguage,orwhichencoding,isused. Itcanbeshownthatthatareallofthesamem-degree,and hencearebasicallyallthesame.Moreonthisinthecontextofrandomnesslater.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.