Proceedings in Adaptation, Learning and Optimization 6 Jiuwen Cao Kezhi Mao Jonathan Wu Amaury Lendasse Editors Proceedings of ELM-2015 Volume 1 Theory, Algorithms and Applications (I) Proceedings in Adaptation, Learning and Optimization Volume 6 Series editors Yew Soon Ong, Nanyang Technological University, Singapore e-mail: [email protected] Meng-Hiot Lim, Nanyang Technological University, Singapore e-mail: [email protected] Board of editors Hussain Abbas, University of New South Wales, Australia Giovanni Acampora, Nottingham Trent University, Nottingham, UK Enrique Alba, University of Málaga, Málaga, Spain Jonathan Chan, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand Sung-Bae Cho, Yonsei University, Seoul, Korea Hisao Ishibuchi, Osaka Prefecture University, Osaka, Japan Wilfried Jakob, Institute for Applied Computer Science (IAI), Germany Jose A. Lozano, University of the Basque Country UPV/EHU, Spain Zhang Mengjie, Victoria University of Wellington, Wellington, New Zealand Jim Smith, University of the West of England, Bristol, UK Kay-Chen Tan, National University of Singapore, Singapore Ke Tang, School of Computer Science and Technology, China Chuang-Kang Ting, National Chung Cheng University, Taiwan Donald C. Wunsch, Missouri University of Science & Technology, USA Jin Yaochu, University of Surrey, UK About this Series The role of adaptation, learning and optimization are becoming increasingly essential and intertwined. The capability of a system to adapt either through modification of its physiological structure or via some revalidation process of internalmechanismsthatdirectlydictatetheresponseorbehavioriscrucialinmany real world applications. Optimization lies at the heart of most machine learning approaches while learning and optimization are two primary means to effect adaptation in various forms. They usually involve computational processes incorporated within the system that trigger parametric updating and knowledge or model enhancement, giving rise to progressive improvement. This book series serves as a channel to consolidate work related to topics linked to adaptation, learning and optimization in systems and structures. Topics covered under this series include: (cid:129) complex adaptive systems including evolutionary computation, memetic com- puting, swarm intelligence, neural networks, fuzzy systems, tabu search, simu- lated annealing, etc. (cid:129) machine learning, data mining & mathematical programming (cid:129) hybridization of techniques that span across artificial intelligence and compu- tational intelligence for synergistic alliance of strategies for problem-solving (cid:129) aspects of adaptation in robotics (cid:129) agent-based computing (cid:129) autonomic/pervasive computing (cid:129) dynamic optimization/learning in noisy and uncertain environment (cid:129) systemic alliance of stochastic and conventional search techniques (cid:129) all aspects of adaptations in man-machine systems. This book series bridges the dichotomy of modern and conventional mathematical and heuristic/meta-heuristics approaches to bring about effective adaptation, learning and optimization. It propels the maxim that the old and the new can come together and be combined synergistically to scale new heights in problem-solving. To reach such a level, numerous research issues will emerge and researchers will find the book series a convenient medium to track the progresses made. More information about this series at http://www.springer.com/series/13543 ⋅ Jiuwen Cao Kezhi Mao ⋅ Jonathan Wu Amaury Lendasse Editors Proceedings of ELM-2015 Volume 1 Theory, Algorithms and Applications (I) 123 Editors JiuwenCao Jonathan Wu Institute of Information andControl Department ofElectrical andComputer HangzhouDianziUniversity Engineering Hangzhou, Zhejiang University of Windsor China Windsor, ON Canada Kezhi Mao Schoolof Electrical andElectronic Amaury Lendasse Engineering Department ofMechanical andIndustrial NanyangTechnological University Engineering Singapore University of Iowa Singapore Iowa City,IA USA ISSN 2363-6084 ISSN 2363-6092 (electronic) Proceedings inAdaptation, Learning andOptimization ISBN978-3-319-28396-8 ISBN978-3-319-28397-5 (eBook) DOI 10.1007/978-3-319-28397-5 LibraryofCongressControlNumber:2015958845 ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland Contents Extreme Learning Machine for Multi-class Sentiment Classification of Tweets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Zhaoxia Wang and Yogesh Parth Efficient Batch Parallel Online Sequential Extreme Learning Machine Algorithm Based on MapReduce . . . . . . . . . . . . . . . . . . . . . 13 Shan Huang, Botao Wang, Yuemei Chen, Guoren Wang and Ge Yu Fixed-Point Evaluation of Extreme Learning Machine for Classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Yingnan Xu, Jingfei Jiang, Juping Jiang, Zhiqiang Liu and Jinwei Xu Multi-layer Online Sequential Extreme Learning Machine for Image Classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Bilal Mirza, Stanley Kok and Fei Dong ELM Meets Urban Computing: Ensemble Urban Data for Smart City Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Ningyu Zhang, Huajun Chen, Xi Chen and Jiaoyan Chen Local and Global Unsupervised Kernel Extreme Learning Machine and Its Application in Nonlinear Process Fault Detection . . . . . . . . . . 65 Hanyuan Zhang, Xuemin Tian, Xiaohui Wang and Yuping Cao Parallel Multi-graph Classification Using Extreme Learning Machine and MapReduce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Jun Pang, Yu Gu, Jia Xu, Xiaowang Kong and Ge Yu Extreme Learning Machine for Large-Scale Graph Classification Based on MapReduce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Zhanghui Wang, Yuhai Zhao and Guoren Wang v vi Contents The Distance-Based Representative Skyline Calculation Using Unsupervised Extreme Learning Machines . . . . . . . . . . . . . . . . 107 Mei Bai, Junchang Xin, Guoren Wang and Xite Wang Multi-label Text Categorization Using L -norm Minimization 21 Extreme Learning Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Mingchu Jiang, Na Li and Zhisong Pan Cluster-Based Outlier Detection Using Unsupervised Extreme Learning Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Xite Wang, Derong Shen, Mei Bai, Tiezheng Nie, Yue Kou and Ge Yu Segmentation of the Left Ventricle in Cardiac MRI Using an ELM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Yang Luo, Benqiang Yang, Lisheng Xu, Liling Hao, Jun Liu, Yang Yao and Frans van de Vosse Channel Estimation Based on Extreme Learning Machine for High Speed Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Fang Dong, Junbiao Liu, Liang He, Xiaohui Hu and Hong Liu MIMO Modeling Based on Extreme Learning Machine. . . . . . . . . . . . 169 Junbiao Liu, Fang Dong, Jiuwen Cao and Xinyu Jin Graph Classification Based on Sparse Graph Feature Selection and Extreme Learning Machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 Yajun Yu, Zhisong Pan and Guyu Hu Time Series Prediction Based on Online Sequential Improved Error Minimized Extreme Learning Machine. . . . . . . . . . . . . . . . . . . 193 Jiao Xue, Zeshen Liu, Yong Gong and Zhisong Pan Adaptive Input Shaping for Flexible Systems Using an Extreme Learning Machine Algorithm Identification . . . . . . . . . . . . . . . . . . . . 211 Jun Hu and Zhongyi Chu Kernel Based Semi-supervised Extreme Learning Machine and the Application in Traffic Congestion Evaluation. . . . . . . . . . . . . 227 Qing Shen, Xiaojuan Ban, Chong Guo and Cong Wang Improvement of ELM Algorithm for Multi-object Identification in Gesture Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 Liang Diao, Liguo Shuai, Huiling Chen and Weihang Zhu Contents vii SVM and ELM: Who Wins? Object Recognition with Deep Convolutional Features from ImageNet. . . . . . . . . . . . . . . . . . . . . . . . 249 Lei Zhang, David Zhang and Fengchun Tian Learning with Similarity Functions: A Novel Design for the Extreme Learning Machine. . . . . . . . . . . . . . . . . . . . . . . . . . . 265 Federica Bisio, Paolo Gastaldo, Rodolfo Zunino, Christian Gianoglio and Edoardo Ragusa A Semi-supervised Low Rank Kernel Learning Algorithm via Extreme Learning Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 Bing Liu, Mingming Liu, Chen Zhang and Weidong Wang Application of Extreme Learning Machine on Large Scale Traffic Congestion Prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 Xiaojuan Ban, Chong Guo and Guohui Li Extreme Learning Machine-Guided Collaborative Coding for Remote Sensing Image Classification. . . . . . . . . . . . . . . . . . . . . . . 307 Chunwei Yang, Huaping Liu, Shouyi Liao and Shicheng Wang Distributed Weighted Extreme Learning Machine for Big Imbalanced Data Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 Zhiqiong Wang, Junchang Xin, Shuo Tian and Ge Yu NMR Image Segmentation Based on Unsupervised Extreme Learning Machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 Junchang Xin, Zhongyang Wang, Shuo Tian and Zhiqiong Wang Annotating Location Semantic Tags in LBSN Using Extreme Learning Machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 Xiangguo Zhao, Zhen Zhang, Xin Bi, Xin Yu and Jingtao Long Feature Extraction of Motor Imagery EEG Based on Extreme Learning Machine Auto-encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 Lijuan Duan, Yanhui Xu, Song Cui, Juncheng Chen and Menghu Bao Multimodal Fusion Using Kernel-Based ELM for Video Emotion Recognition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 Lijuan Duan, Hui Ge, Zhen Yang and Juncheng Chen viii Contents Equality Constrained-Optimization-Based Semi-supervised ELM for Modeling Signal Strength Temporal Variation in Indoor Location Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 Felis Dwiyasa, Meng-Hiot Lim, Yew-Soon Ong and Bijaya Panigrahi Extreme Learning Machine with Gaussian Kernel Based Relevance Feedback Scheme for Image Retrieval . . . . . . . . . . . . . . . . 397 Lijuan Duan, Shuai Dong, Song Cui and Wei Ma Routing Tree Maintenance Based on Trajectory Prediction in Mobile Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 Junchang Xin, Teng Li, Pei Wang and Zhiqiong Wang Two-Stage Hybrid Extreme Learning Machine for Sequential Imbalanced Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 Wentao Mao, Jinwan Wang, Ling He and Yangyang Tian Feature Selection and Modelling of a Steam Turbine from a Combined Heat and Power Plant Using ELM . . . . . . . . . . . . . 435 Sandra Seijo, Victoria Martínez, Inés del Campo, Javier Echanobe and Javier García-Sedano On the Construction of Extreme Learning Machine for One Class Classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447 Chandan Gautam and Aruna Tiwari Record Linkage for Event Identification in XML Feeds Stream Using ELM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463 Xin Bi, Xiangguo Zhao, Wenhui Ma, Zhen Zhang and Heng Zhan Timeliness Online Regularized Extreme Learning Machine. . . . . . . . . 477 Xiong Luo, Xiaona Yang, Changwei Jiang and Xiaojuan Ban An Efficient High-Dimensional Big Data Storage Structure Based on US-ELM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489 Linlin Ding, Yu Liu, Baoyan Song and Junchang Xin An Enhanced Extreme Learning Machine for Efficient Small Sample Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501 Ying Yin, Yuhai Zhao, Ming Li and Bin Zhang Contents ix Code Generation Technology of Digital Satellite . . . . . . . . . . . . . . . . . 511 Ren Min, Dong Yunfeng and Li Chang Class-Constrained Extreme Learning Machine . . . . . . . . . . . . . . . . . . 521 Xiao Liu, Jun Miao, Laiyun Qing and Baoxiang Cao Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531