ebook img

Problems concerning $ n $-weak amenability of a Banach algebra PDF

15 Pages·2016·0.3 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Problems concerning $ n $-weak amenability of a Banach algebra

Czechoslovak Mathematical Journal Alireza Medghalchi; Taher Yazdanpanah n Problems concerning -weak amenability of a Banach algebra CzechoslovakMathematicalJournal,Vol.55(2005),No.4,863–876 PersistentURL:http://dml.cz/dmlcz/128029 Terms of use: ©InstituteofMathematicsASCR,2005 InstituteofMathematicsoftheCzechAcademyofSciencesprovidesaccesstodigitizeddocuments strictlyforpersonaluse.EachcopyofanypartofthisdocumentmustcontaintheseTermsofuse. Thisdocumenthasbeendigitized,optimizedforelectronicdeliveryand stampedwithdigitalsignaturewithintheprojectDML-CZ:TheCzechDigital MathematicsLibraryhttp://dml.cz CzechoslovakMathematical Journal,55(130)(2005),863–876 PROBLEMS CONCERNING n-WEAK AMENABILITY OF A BANACH ALGEBRA (cid:0) (cid:1)(cid:3)(cid:2)(cid:4) (cid:5)(cid:7)(cid:6)(cid:9)(cid:8)(cid:11)(cid:10)(cid:12)(cid:5)(cid:14)(cid:13) (cid:15) (cid:16) (cid:8)(cid:17)(cid:1) (cid:18) (cid:16) (cid:2),Teheran, and (cid:8) (cid:16) (cid:5) (cid:4) (cid:20)(cid:21)(cid:8)(cid:22)(cid:6)(cid:9)(cid:13)(cid:23)(cid:8) (cid:24) (cid:25)(cid:9)(cid:8) (cid:24) (cid:8) (cid:16) ,Boushehr (cid:19) (Received October 24, 2002) Abstract. Inthispaperweextendthenotionofn-weakamenabilityofaBanachalgebraA wthheennAn∗∈i(cid:26)s.aTnecAhn(2icna)l-mcaolcduullaetiaonndssthhoiswitdheaatlweahdesntAo iasAnurmenbserregouflainrtoerreasntinidgearlesinultAs∗o∗n, Banach algebras. We thenextendthe concept of n-weak amenability ton . ∈ (cid:27) Keywords: Banach algebra, weakly amenable, Arensregular, n-weakly amenable MSC 2000: 46H20, 46H40 1. Introduction LetA beaBanachalgebra,X aBanachA-bimodule. ThenwedenotebyX the ∗ topological dual space of X; the value of x X at x X is denoted by x,x . ∗ ∗ ∗ ∈ ∈ h i We recall that X is a Banach A-bimodule under the actions ∗ x,ax = xa,x , x,x a = ax,x (a A, x X, x X ). ∗ ∗ ∗ ∗ ∗ ∗ h i h i h i h i ∈ ∈ ∈ A derivation D: A X is a (bounded) linear map such that −→ D(ab)=D(a)b+aD(b) (a,b A). ∈ For each x X, δ (a) = ax xa is a derivation, which is called inner. The first x ∈ − cohomology group H1(A,X) is the quotient of the space of derivations by the in- ner derivations, and in many situations triviality of this space is of considerable importance. In particular, A is called contractible if H1(A,X) = 0 for every { } Banach A-bimodule X, A is called amenable if H1(A,X ) = 0 for every Ba- ∗ { } nach A-bimodule X, is called n-weakly amenable if H1(A,A(n)) = 0 , and A { } 863 weaklyamenableifA is1-weaklyamenable. Forthetheoryofamenableandweakly amenable Banach algebras see [1], [2], [4], [6], [8] and [9] for example. LetA beaBanachalgebra. Givena A andF A , then Fa anda F are ∗ ∗ ∗∗ ∗ ∗ ∈ ∈ defined in A by the formulae ∗ a,Fa∗ = a∗a,F , a,a∗F = aa∗,F (a A). h i h i h i h i ∈ Next, for F,G A∗∗, F (cid:3)G and F G are defined in A∗∗ by the formulae ∈ 4 a∗,F (cid:3)G = Ga∗,F , a∗,F G = a∗F,G (a∗ A∗). h i h i h 4 i h i ∈ ThenA∗∗ isaBanachalgebrawithrespecttoeitheroftheproducts(cid:3)and . These 4 products are called the first and second Arens products on A , respectively. The ∗∗ algebra A is called Arens regular if the two products (cid:3) and coincide. For the 4 general theory of Arens products, see [5] and [10], for example. Let A be a Banach algebra, n 0 and let P : A(n) A(n+2) be the ∈ (cid:28) ∪{ } n −→ natural embedding, i.e., ϕ ,P ϕ = ϕ ,ϕ (ϕ A(n), ϕ A(n+1)), n+1 n n n n+1 n n+1 h i h i ∈ ∈ where A(0) = A and A(n) is the nth dual of A. We shall require the following standard properties of the Arens products. Suppose (a ) and (b ) are nets in A α β with P a F and P b G in (A ,σ), where σ =σ(A ,A ) is the weak 0 α 0 β ∗∗ ∗∗ ∗ ∗ −→ −→ topology on A∗∗. Then F (cid:3)G = limlimP0(aαbβ) and F G = limlimP0(aαbβ) α β 4 β α in (A∗∗,σ). Also, for a A and F A∗∗, we have P0(a) F = P0(a)(cid:3)F and ∈ ∈ 4 F P0(a)=F (cid:3)P0(a). 4 By easy calculations we can obtain the following properties of the P maps. n Lemma 1.1. Let m and n 0 . Then ∈ (cid:28) ∈ (cid:28) ∪{ } (i) P P =P P ; n∗∗ n n+2 n (ii) P P =id; n∗ n+1 (iii) P(2m+1)P ...P P =P ...P P ; n n+2m+1 n+3 n+1 n+2m 1 n+3 n+1 (iv) Pn(2m)Pn+2m 2 =Pn+2mPn(2m−2). − − Lemma 1.2. Let A be a Banach algebra, n and let D: A A(n) be a ∈ (cid:28) −→ derivation. Then P P ...P D(2m)P P ...P =D (m ). n∗−1 n∗+1 n∗+2m−3 2m−2 2m−4 0 ∈ (cid:28) (cid:29)(cid:31)(cid:30)! " $# . It is enough to show that P D(2m)P = D(2m 2) for all n∗+(2m 3) 2m 2 − m . For ϕ A(2m 2) and ψ A(n+2m 3) we−have − ∈ (cid:28) ∈ − ∈ − ψ,P D(2m)P (ϕ) = D(2m 1)P (ψ),P (ϕ) h n∗+2m−3 2m−2 i h − n+2m−3 2m−2 i ϕ,D(2m 1)P (ψ) = ψ,D(2m 2)(ϕ) , − n+2m 1 − h − i h i and so Pn∗+(2m 3)D(2m)P2m 2 =D(2m−2). (cid:3) − − 864 2. When A(m) is an A(2n)-module? Let A be a Banach algebra. Clearly A(4) is a Banach algebra with four Arens products. We denote these algebras by (A4,(cid:3)(cid:3)) = ((A∗∗,(cid:3))∗∗,(cid:3)), (A4, (cid:3)) = 4 ((A∗∗, )∗∗,(cid:3)), (A4,(cid:3) ) = ((A∗∗,(cid:3))∗∗, ), (A4, ) = ((A∗∗, )∗∗, ). For 4 4 4 44 4 4 a A and ϕ A(4) it is easy to check that ∈ ∈ P2P0(a)(cid:3)(cid:3)ϕ=P2P0(a)(cid:3) ϕ=P2P0(a) (cid:3)ϕ=P2P0(a) ϕ, 4 4 44 ϕ(cid:3)(cid:3)P2P0(a)=ϕ(cid:3) P2P0(a)=ϕ (cid:3)P2P0(a)=ϕ P2P0(a). 4 4 44 Let A be a Banachalgebra and n . Consider the maps (a ,ϕ ) a ϕ and ∈ (cid:28) ∗ 2n 7→ ∗· 2n (a ,ϕ ) ϕ a from A A(2n) into A defined by ∗ 2n 2n ∗ ∗ ∗ 7→ · × a,a ϕ = P ...P P (aa ),ϕ , ∗ 2n 2n 3 3 1 ∗ 2n h · i h − i a,ϕ2n a∗ = P2n 3...P3P1(a∗a),ϕ2n (a A). h · i h − i ∈ Then a ϕ = a P P ...P (ϕ ) and ϕ a = P P ...P (ϕ )a . ∗ · 2n ∗ 1∗ 3∗ 2∗n−3 2n 2n · ∗ 1∗ 3∗ 2∗n−3 2n ∗ Clearly these maps are continuous and bilinear. Note that with respect to these actions A is not necessarily a Banach A(2n)-module. By dualizing these actions ∗ we obtain continuous bilinearmaps from A(m) A(2n) into A(m) for everym . × ∈ (cid:28) For example, for F A and ϕ A(2n) we have ∗∗ 2n ∈ ∈ a ,F ϕ = ϕ a ,F ∗ 2n 2n ∗ h · i h · i = P P ...P (ϕ )a ,F h 1∗ 3∗ 2∗n−3 2n ∗ i =ha∗,F (cid:3)P1∗P3∗...P2∗n−3(ϕ2n)i (a∗ ∈A∗), aFn.dFsroomF·nϕo2wn =onFw(cid:3)ePre1∗gPa3r∗d..th.Pes2∗en−ac3t(iϕo2nns)a.sSAim(i2lna)r-layc,tϕio2nns·Fon=AP(1∗mP)3∗in.d..uPce2∗nd−fr3o(ϕm2nA)4. ∗ Nowconsiderthemaps(F,ϕ ) F ϕ and(F,ϕ ) ϕ F fromA A(2n) 2n 2n 2n 2n ∗∗ 7→ · 7→ · × into A defined by ∗∗ a ,F ϕ = P ...P P (a F),ϕ , ∗ 2n 2n 3 3 1 ∗ 2n h · i h − i a∗,ϕ2n F = P2n 3...P3P1(Fa∗),ϕ2n (a∗ A∗). h · i h − i ∈ Clearly these are continuous bilinear maps, F ϕ =F P P ...P (ϕ ) and · 2n 4 1∗ 3∗ 2∗n−3 2n sfrimomilatrhlye ϕac2tnio·nFs i=ndPu1∗cPed3∗f.r.o.mP2∗nA−3.(ϕA2ng)ai(cid:3)nFby. dNuoatleiztinhgatththeeseseaacctitoionnsswaerehadviffeecroennt- ∗ tinuous bilinear maps from A(m) A(2n) into A(m) for every m > 2. So we have × A(2n)-actions on A(m) (m>2) induced from A∗∗. 865 Let A be a Banach algebra and let n,k ∈ (cid:28) be such that n > 2k. Set B = (A(2k), ), where is one of the 2k Arens products on A(2k). Then B is a Banach · · algebra and B is a Banach B-module. By a similar argument we have continuous ∗ bilinear maps from B A(2n) into B and from A(2n) into B . Therefore ∗ ∗ ∗∗ ∗∗ × B × foreverym>2k+1wehaveA(2n)-actionsonA(m) inducedfromB∗ andforevery m>2k+2 we have A(2n)-actions on A(m) induced from B∗∗. Proposition 2.1. Let A be an Arens regularBanachalgebra and n . Then ∈ (cid:28) A is a Banach A(2n)-bimodule with actions induced from A and any of Arens ∗ ∗ products on A(2n). In particular, A(m) is a Banach A(2n)-bimodule by actions induced from A . ∗ (cid:29)(cid:31)(cid:30)! " $# . When n = 1, one can immediately see that A is a left Banach ∗ (A∗∗,(cid:3))-module and a right Banach (A∗∗, )-module. Since A is Arens regular, 4 A is a left and right Banach A -module. For a A, a A and F,G A we ∗ ∗∗ ∗ ∗∗ ∈ ∈ ∈ have a,(Fa∗)G = (aF)a∗,G = a∗,G(cid:3)(aF) h i h i h i = a∗G,P0(a)(cid:3)F = F(a∗G),P0(a) h i h i = a,F(a G) , ∗ h i and so (Fa )G=F(a G). Hence A is a Banach A -bimodule. Now suppose the ∗ ∗ ∗ ∗∗ result has been proved for n. We may assume that A(2n+2) = ((A(2n))∗∗,(cid:3)). Let a A, a A , ϕ,ψ A(2n+2) and let (ϕ ) , (ψ ) be nets in A(2n) such that ∗ ∗ α β ∈ ∈ ∈ P (ϕ ) ϕ and P (ψ ) ψ in the weak topology. Then 2n α 2n β ∗ −→ −→ a,a∗ (ϕ(cid:3)ψ) = limlim P2n 3...P3P1(aa∗),ϕαψβ h · i α β h − i = limlim a,a∗ (ϕαψβ) α β h · i = limlim a,(a ϕ ) ψ ∗ α β α β h · · i = limlim a,a P P ...P (ϕ )P P ...P (ψ ) α β h ∗ 1∗ 3∗ 2∗n−3 α 1∗ 3∗ 2∗n−3 β i = limlim P ...P P (aa P P ...P (ϕ )),ψ α β h 2n−3 3 1 ∗ 1∗ 3∗ 2∗n−3 α βi = liαmhaa∗P1∗P3∗...P2∗n−3(ϕα),P1∗P3∗...P2∗n−1(ψ)i = lim P ...P (ψ)aa ,P P ...P (ϕ ) α h 1∗ 2∗n−1 ∗ 1∗ 3∗ 2∗n−3 α i = a,a P ...P (ϕ)P ...P (ψ) h ∗ 1∗ 2∗n−1 1∗ 2∗n−1 i = a,(a ϕ) ψ , ∗ h · · i 866 and so a∗ (ϕ(cid:3)ψ)=(a∗ ϕ) ψ. Similarly (ϕ(cid:3)ψ) a∗ =ϕ (ψ a∗). On the other · · · · · · hand, (ϕ·a∗)·ψ =(P1∗...P2∗n−1(ϕ)a∗)P1∗...P2∗n−1(ψ) =P ...P (ϕ)(a P ...P (ψ)) 1∗ 2∗n 1 ∗ 1∗ 2∗n 1 − − =ϕ (a ψ). ∗ · · Hence A∗ is a Banach A(2n+2)-bimodule. So we are done by induction. (cid:3) Proposition 2.2. Let A be an Arens regularBanachalgebra and n . Then ∈ (cid:28) withanyoftheArensproductsonA(2n),theA(2n)-actionsonA inducedfromA ∗∗ ∗ andA coincide. Inparticular,A isaBanachA(2n)-bimodulewith anyofthese ∗∗ ∗∗ actions. (cid:29)(cid:31)(cid:30)! " $# is straightforward. (cid:3) Let A be a Banach algebra and m,n . Then A(2m) is a Banach algebra ∈ (cid:28) with one of the 2m Arens products. We recall that every closed subalgebra of an Arens regular Banach algebra is Arens regular. In particular, when A(2m) is Arens regularforaBanachalgebraA andm , then A ,A(4),...,A(2m 2) areArens ∈ (cid:28) ∗∗ − regular, and these algebras have only one Arens product. The following proposition is a generalizationof Proposition 2.1 and Proposition 2.2. Proposition 2.3. Let A be a Banach algebra and let n,m be such ∈ (cid:28) that n > 2m. If A(2m) is Arens regular, then A(2m+1) and A(2m+2) are Banach A(2n)-bimodules with actions induced from A(2m+1). Moreover, the A(2n)-actions on A(2m+2) induced from A(2m+1) and A(2m+2) coincide. Definition 2.4. Let A be a Banach algebra. A is called completely Arens regular, if for every n , A(2n) is Arens regular. ∈ (cid:28) It is well known that every C -algebra is Arens regular and the second dual of a ∗ C -algebraisaC -algebra. Therefore,everyC -algebraiscompletelyArensregular. ∗ ∗ ∗ Proposition 2.5. Let A be a completely Arens regular Banach algebra. Then A(m) is a Banach A(2n)-module with actions induced A(m). (cid:29)(cid:31)(cid:30)! " $# . A direct consequence of Proposition 2.3. (cid:3) 867 Lemma 2.6. LetA be aBanachalgebraand P (A) aleft (right)idealinA . 0 ∗∗ Then A∗ is a Banach (A∗∗,(cid:3))-module((A∗∗, ))-module). 4 (cid:29)(cid:31)(cid:30)! " $# . For a A , a A and F,G A we have ∗ ∗ ∗∗ ∈ ∈ ∈ a,a∗(F (cid:3)G) = G(aa∗),F = G P0(a)a∗,F h i h i h 4 i = a ,F G P (a) = (a F)G,P (a) ∗ 0 ∗ 0 h 4 4 i h i = a,(a∗F)G h i and a,F(a∗G) = a∗G(cid:3)P0(a),F = a∗,G(cid:3)P0(a)(cid:3)F h i h i h i = F(a G),P (a) = a,F(a G) . ∗ 0 ∗ h i h i Therefore A∗ is a Banach (A∗∗,(cid:3))-module. (cid:3) Lemma 2.7. Let A be a Banach algebra. Then P (A) is an ideal in A with 0 ∗∗ anyof the Arensproductsif andonlyif P P (A)isanidealinA(4) with anyof the 2 0 Arens products. (cid:29)(cid:31)(cid:30)! " $# . Let P (A) be an ideal in A . For a A and ϕ A(4), one can 0 ∗∗ ∈ ∈ immediately see that P2P0(a)(cid:3)(cid:3)ϕ=P2(P0(a)(cid:3)P1∗(ϕ)) and ϕ(cid:3)(cid:3)P2P0(a)=P2(P1∗(ϕ)(cid:3)P0(a)). Therefore P P (A) is an ideal in A(4) with any of the Arens products on A(4). 2 0 Conversely, let P P (A) be an ideal in A(4). Take a A and F A . It is easy 2 0 ∗∗ ∈ ∈ toseethatP2(P0(a)(cid:3)F)=P2P0(a)(cid:3)(cid:3)P2(F) P2P0(A). HenceP0(a)(cid:3)F P0(A) ∈ ∈ and similarly F (cid:3)P0(a) P0(A). Therefore P0(A) is an ideal in A∗∗. (cid:3) ∈ Proposition2.8. LetA beaBanachalgebraandP (A)anidealinA . Then 0 ∗∗ A is a Banach A(2n)-module with any of the Arens products on A(2n) (n ). ∗ ∈ (cid:28) (cid:29)(cid:31)(cid:30)! " $# . Whenn=1theresultistruebyLemma2.6. Nowsuppose,inductively, theresulthasbeenprovedforn 1. WemayassumethatA(2n+2) =((A(2n))∗∗,(cid:3)). − Let a A, a A and ϕ,ψ A(2n+2), and let (ϕ ), (ψ ) be nets in A(2n) such ∗ ∗ α β ∈ ∈ ∈ that P (ϕ ) ϕ and P (ψ ) ψ in the weak topology. Now we have 2n α 2n β ∗ −→ −→ a,a∗ (ϕ(cid:3)ψ) = P2n 1...P3P1(aa∗),ϕ(cid:3)ψ h · i h − i = limlim a ,P P ...P (ϕ ) P P ...P (ψ ) P (a) α β h ∗ 1∗ 3∗ 2∗n−3 α 4 1∗ 3∗ 2∗n−3 β 4 0 i = lim aa P P ...P (ϕ ),P P ...P (ψ) α h ∗ 1∗ 3∗ 2∗n−3 α 1∗ 3∗ 2∗n−1 i 868 = liαmha∗,P1∗P3∗...P2∗n−3(ϕα)(cid:3)P1∗P3∗...P2∗n−1(ψ)(cid:3)P0(a)i =haa∗,P1∗P3∗...P2∗n−1(ϕ)(cid:3)P1∗P3∗...P2∗n−1(ψ)i = a,(a ϕ) ψ , ∗ h · · i and so a∗ (ϕ(cid:3)ψ)=(a∗ ϕ) ψ. Similarly (ϕ(cid:3)ψ) a∗ =ϕ (ψ a∗). Since A∗ is a · · · · · · Banach A -module, ∗∗ (ϕ a ) ψ =(P P ...P (ϕ)a )P P ...P (ψ) · ∗ · 1∗ 3∗ 2∗n−1 ∗ 1∗ 3∗ 2∗n−1 =P1∗P3∗...P2∗n 1(ϕ)(a∗P1∗P3∗...P2∗n 1(ψ)) − − =ϕ (a ψ). ∗ · · Consequently, A∗ is a Banach A(2n)-module. (cid:3) Proposition2.9. LetA beaBanachalgebra. ThenP2((A∗∗,(cid:3)))isaleft(right, two-sided) ideal in (A(4),(cid:3)(cid:3)) if and only if P2∗ is an A(4)-module homomorphism between left (right, two-sided) Banach A(4)-modules. (cid:29)(cid:31)(cid:30)! " $# . LetP2((A∗∗,(cid:3)))bealeftidealin(A(4),(cid:3)(cid:3)). ForF A∗∗,ϕ4 A(4) ∈ ∈ and ϕ A(5) we have 5 ∈ hF,P2∗(ϕ4ϕ5)i=hP2(F),ϕ4ϕ5i=hP2(F)(cid:3)(cid:3)ϕ4,ϕ5i =hP2∗(ϕ5),P2(F)(cid:3)(cid:3)ϕ4i=hF,ϕ4P2∗(ϕ5)i. Hence P is an A(4)-module homomorphism between left Banach A(4)-modules. 2∗ Conversely, for F A , ϕ A(4) it is easy to see that ∗∗ 4 ∈ ∈ P2(F)(cid:3)(cid:3)ϕ4 =P2(P1∗(P2(F)(cid:3)(cid:3)ϕ4)), so P2((A∗∗,(cid:3))) is a left ideal in (A(4),(cid:3)(cid:3)). (cid:3) 3. N-weak amenability for N Z ∈ Lemma 3.1. LetA beaBanachalgebraandD: A A aderivation. Then ∗ −→ (i) D∗∗: (A∗∗,(cid:3)) ( ∗∗)∗ is satisfied in −→ A D∗∗(F (cid:3)G)=D∗∗(F)G+P0∗∗(F)D∗∗(G) (F,G∈A∗∗), (ii) D : (A , ) (A ) is satisfied in ∗∗ ∗∗ ∗∗ ∗ 4 −→ D (F G)=D (F)P (G)+FD (G) (F,G A ). ∗∗ 4 ∗∗ 0∗∗ ∗∗ ∈ ∗∗ 869 (cid:29)(cid:31)(cid:30)! " $# . (i) Let F,G A and let (a ), (b ) be nets in A such that ∗∗ α β ∈ P (a ) F and P (b ) G in the weak topology. We have 0 α 0 β ∗ −→ −→ H,D∗∗(F (cid:3)G) = D∗(H),F (cid:3)G h i h i = limlim D(a )b +a D(b ),H α β α β α β h i = limlim b ,HD(a )+D (Ha ) β α ∗ α α β h i = liαmhaα,D∗(G(cid:3)H)+P0∗(D∗∗(G)H)i = H,D (F)G+P (F)D (G) h ∗∗ 0∗∗ ∗∗ i and so D∗∗(F (cid:3)G)=D∗∗(F)G+P0∗∗(F)D∗∗(G). (ii) The proof is similar to (i). (cid:3) Corollary 3.2. Let A be a Banach algebra and D: A A a derivation. ∗ −→ Then (i) D∗∗: (A∗∗,(cid:3)) −→ (A∗∗)∗ is a derivation if and only if P0∗∗(F)D∗∗(G) = FD (G) for F,G A ; ∗∗ ∗∗ ∈ (ii) D : (A , ) (A ) is a derivation if and only if D (F)P (G) = ∗∗ ∗∗ 4 −→ ∗∗ ∗ ∗∗ 0∗∗ D (F)G for F,G A . ∗∗ ∗∗ ∈ Definition3.3. LetA beaBanachalgebram,n∈ (cid:28) , and16m<2n. TheBa- nachalgebraA(2n) iscalled( m)-weaklyamenable,ifA(2n m) isaBanachA(2n)- − − bimodule with actions induced from A(2n m) and H1(A(2n),A(2n m))= 0 . − − { } Theorem3.4. LetA beaBanachalgebraandP (A)aleft(right)idealinA . 0 ∗∗ If (A∗∗,(cid:3))((A∗∗, )) is ( 1)-weakly amenable, then A is weakly amenable. 4 − (cid:29)(cid:31)(cid:30)! " $# . By Lemma 2.6, A∗ is a Banach (A∗∗,(cid:3))-module. Let D: A A∗ −→ be a derivation. Put d = P0∗D∗∗: (A∗∗,(cid:3)) −→ A∗. For F,G ∈ A∗∗, a ∈ A we have ha,P0∗(D∗∗(F)G)i=hG(cid:3)P0(a),D∗∗(F)i=hd(F),G4P0(a)i=ha,d(F)Gi and ha,P0∗(P0∗∗(F)D∗∗(G))i=hP0∗(D∗∗(G)P0(a)),Fi=hd(G)P0(a),Fi=ha,Fd(G)i. Therefore, by Lemma 3.1, d is a derivation. Since H1((A∗∗,(cid:3)),A∗) = 0 , there { } exists a A such that d=δ . Using Lemma 1.2 we obtain ∗ ∗ a ∈ ∗ aa a a=P (a)a a P (a)=dP (a) ∗ ∗ 0 ∗ ∗ 0 0 − − =P D P (a)=D(a) (a A). 0∗ ∗∗ 0 ∈ Hence D=δa is an inner derivation. (cid:3) ∗ 870 Theorem 3.5. LetA beaBanachalgebra. IfP (A)isanidealinA andthe 0 ∗∗ Banach algebra A(2n) (n ) with one of 2n Arens products is ( 2n+1)-weakly ∈ (cid:28) − amenable, then A is weakly amenable. (cid:29)(cid:31)(cid:30)! " $# . Let D: A A be a derivation. We claim that ∗ −→ dn =P0∗P0∗∗∗...P0(2n−1)D(2n): A(2n) −→A∗ is a derivation. By Proposition 3.4, the result is true for n = 1. Now suppose, inductively, that the result has been provedfor n. We may suppose that A(2n+2) = ((A(2n))∗∗,(cid:3)). For a A, a∗ A∗, ϕ,ψ A(2n+2), let (ϕα) and (ψβ) be nets ∈ ∈ ∈ in A(2n) such that P (ϕ ) ϕ and P (ψ ) ψ in the weak topology. Then 2n α 2n β ∗ −→ −→ we have a,dn+1(ϕ(cid:3)ψ) = limlim a,dn(ϕα)ψβ +ϕαdn(ψβ) h i α β h i = limlim P ...P P (ad (ϕ )),ψ 2n 3 3 1 n α β α β h − i +limlim ψ ,D(2n+1)P(2n)...P (aP ...P (ϕ )) α β h β 0 0∗∗ 1∗ 2∗n−3 α i = liαmhadn(ϕα),P1∗...P2∗n−1(ψ)i +lim d (ψ)a,P ...P (ϕ ) α h n+1 1∗ 2∗n−3 α i = a,d (ϕ) ψ+ϕ d (ψ) , n+1 n+1 h · · i so d is a derivation. Since H1(A(2n), )= 0 , there exists a A such that n+1 ∗ ∗ ∗ A { } ∈ d =δ . Using Lemma 1.1(iv) and Lemma 1.2, we conclude that n a ∗ aa∗ a∗a=P2n 2...P2P0(a) a∗ a∗ P2n 2...P2P0(a) − − · − · − =d P ...P P (a)=D(a) (a A). n 2n 2 2 0 − ∈ Hence D=δa is inner. (cid:3) ∗ Lemma 3.6. Let A be a Banach algebra, n and let D: A A(2n) be a ∈ (cid:28) −→ derivation. Then for every F,G A ∗∗ ∈ (i) D∗∗: (A∗∗,(cid:3)) ((A(2n))∗∗,(cid:3)) holds in −→ D∗∗(F(cid:3)G)=D∗∗(F)(cid:3)P2∗n∗ 2...P2∗∗P0∗∗(G)+P2∗n∗ 2...P2∗∗P0∗∗(F)(cid:3)D∗∗(G). − − (ii) D : (A , ) ((A(2n)) , ) holds in ∗∗ ∗∗ ∗∗ 4 −→ 4 D (F G)=D (F) P ...P P (G)+P ...P P (F) D (G). ∗∗ 4 ∗∗ 4 2∗n∗−2 2∗∗ 0∗∗ 2∗n∗−2 2∗∗ 0∗∗ 4 ∗∗ (cid:29)(cid:31)(cid:30)! " $# is straightforward. (cid:3) 871

Description:
weakly amenable if s is 1-weakly amenable. For the theory of amenable and weakly amenable Banach algebras see [1], [2], [4], [6], [8] and [9] for example. Let s be a Banach algebra. Given a∗ ∈ s ∗ and F ∈ s ∗∗, then Fa∗ and a∗F are defined in s ∗ by the formulae. 〈a, F a∗〉 =
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.