ebook img

Problems and Solutions in Real Analysis PDF

294 Pages·2007·1.63 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Problems and Solutions in Real Analysis

PROBLEMS AND SOLUTIONS IN REAL ANALYSIS Series on Number Theory and Its Applications ISSN 1793-3161 Series Editor: Shigeru Kanemitsu (Kinki University, Japan) Editorial Board Members: V. N. Chubarikov (Moscow State University, Russian Federation) Christopher Deninger (Universität Münster, Germany) Chaohua Jia (Chinese Academy of Sciences, PR China) Jianya Liu (Shangdong University, PR China) H. Niederreiter (National University of Singapore, Singapore) M. Waldschmidt (Université Pierre et Marie Curie, France) Advisory Board: K. Ramachandra (Tata Institute of Fundamental Research, India (retired)) A. Schinzel (Polish Academy of Sciences, Poland) Vol. 1 Arithmetic Geometry and Number Theory edited by Lin Weng & Iku Nakamura Vol. 2 Number Theory: Sailing on the Sea of Number Theory edited by S. Kanemitsu & J.-Y. Liu ZhangJi - Problems and Solutions.pmd 2 8/31/2007, 4:21 PM Series on Number Theory and Its Applications Vol.4 PROBLEMS AND SOLUTIONS IN REAL ANALYSIS Masayoshi Hata Kyoto University, Japan World Scientific NEW JERSEY • LONDON • SINGAPORE • BEIJING • SHANGHAI • HONG KONG • TAIPEI • CHENNAI Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Series on Number Theory and Its Applications — Vol. 4 PROBLEMS AND SOLUTIONS IN REAL ANALYSIS Copyright © 2007 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN-13 978-981-277-601-3 ISBN-10 981-277-601-X ISBN-13 978-981-277-949-6 (pbk) ISBN-10 981-277-949-3 (pbk) Printed in Singapore. ZhangJi - Problems and Solutions.pmd 1 8/31/2007, 4:21 PM July31,2007 13:35 WSPC/BookTrimSizefor9inx6in real-analysis Preface Romewasnotbuiltinaday... There is no shortcut to good scholarship. To learn mathematics you are to solvemany‘good’problemswithouthaste. Mathematicsisnotonlyforpersons oftalent. Tacklingdifficultproblemsislikechallengingyourself. Evenifyoudo not make a success in solving a problem, you may set some new knowledge or techniqueyoulacked. This book contains more than one hundred and fifty mathematical problems andtheirdetailedsolutionsrelatedmainlytoRealAnalysis. Manyproblemsare selectedcarefullybothforstudentswhoarepresentlylearningorthosewhohave justfinishedtheircoursesinCalculusandLinearAlgebra,orforanypersonwho wants to review and improve his or her skill in Real Analysis and, moreover, to make a step forward, for example, to Complex Analysis, Fourier Analysis, or Lebesgue Integration, etc. The solutions to all problems are supplied in detail, which should compete well with the famous books written by Po´lya and Szego¨ morethanthirty-fiveyearsago. SomeproblemsaretakenfromAnalyticNumberTheory;forexample,theuni- formdistribution(Chapter12)andtheprimenumbertheorem(Chapter17). The latteristreatedinaslightlydifferentway. Theymaybeusefulforanintroduction toAnalyticNumberTheory. Neverthelessthereadershouldnoticethatallsolutionsarenotshortandele- gant. Itmayalwaysbepossibleforthereadertofindbetterandmoreelementary solutions. The problems are merely numbered for convenience’ sake and so the readershouldgrapplewiththemusinganytools,whichmakesadifferencefrom theusualexercisesinCalculus. Onemayuseintegrationforproblemsonseries, forexample. Theauthormustconfessthattherearesomeproblemsexpressedin an elementary way, whose simple and elementary proof could not be found by v July31,2007 13:35 WSPC/BookTrimSizefor9inx6in real-analysis vi ProblemsandSolutionsinRealAnalysis theauthor. Thereasonwhyhedaredtoincludesuchproblemsandthesolutions beyondthelimitsofCalculusisleavingtourgethereadertofindbetterones. The author wishes to take this opportunity to thank Professor S. Kanemitsu forinvaluablehelpinthepreparationofthemanuscript. Enjoymathematicswithapen! M.Hata July31,2007 13:35 WSPC/BookTrimSizefor9inx6in real-analysis Preface vii Someremarksonthedefinitionsandnotationsarelistedbelow. (cid:15) Let f(x)beareal-valuedfunctiondefinedonanopeninterval(a,b)andletc beanypointin[a,b). Wewrite f(c+)or lim f(x) x!c+ todenotetheright-handlimitifitexists.Notethatsomebooksusethenotation “x!c+0”insteadof“x!c+”. Thisisthelimitof f(x)asxapproachestothe pointcsatisfyingx>c.Theleft-handlimit f(c(cid:0))canalsobedefinedsimilarly forc2(a,b]ifitexists. (cid:15) Theright-handderivativeof f(x)atcisdenotedby f0(x)ifitexists. Wealso + definetheleft-handderivative f0(x)ifitexists. (cid:0) { } { } (cid:15) Giventwosequences a and b withb (cid:21)0foralln(cid:21)1,wewrite n n n a =O(b ) n n ifja j (cid:20) Cb holdsforalln (cid:21) 1withsomepositiveconstantC. Inparticular, n n { } a = O(1)isnothingbuttheboundednessofthesequence a . Thisnotation n n ofLandauisaconvenientwayofexpressinginequalities. Notethatthesymbol O(b ) is not a specific sequence; thus one can write O(1) + O(1) = O(1), n forexample. Usuallyweusethesenotationstoshowtheasymptoticbehavior { } { } of a . Themajorantsequence b maybechosenamongstandardpositive n n sequencessuchasnα,(logn)β,eδn,etc.,where ( ) e= lim 1+ 1 n = ∑1 1 n!1 n n! n=0 isthebasetothenaturallogarithm. (cid:15) Ifb > 0forallsufficientlylargenanda /b convergesto0asn ! 1,then n n n wewrite a =o(b ). n n Inparticular,a =o(1)meanssimplythata convergesto0asn!1. n n (cid:15) Ifthelimitofa /b existsandequalsto1,wewrite n n a (cid:24)b n n { } whichgivesclearlyanequivalencerelation. Inthiscasewesaythat a and { } { } { } {n } b are asymptotically equivalent or that a is asymptotic to b . b is n n n n July31,2007 13:35 WSPC/BookTrimSizefor9inx6in real-analysis viii ProblemsandSolutionsinRealAnalysis { } alsosaidtobetheprincipalpartof a . Notethata (cid:24)b ifandonlyif n n n a =b +o(b ). n n n (cid:15) Landau’snotationscanalsobeappliedtoexpresstheasymptoticbehaviorofa givenfunction f(x)as x ! c. Ifjf(x)j (cid:20) Cg(x)holdsonasufficientlysmall neighborhoodofthepointcforsomenon-negativefunctiong(x)andpositive constantC,wewrite f(x)=O(g(x)) as x ! c. We can also define f(x) = o(g(x)) and f(x) (cid:24) g(x) in the same manneraswithsequences,evenwhenx!1orx!(cid:0)1. (cid:15) The set of all continuous functions f(x) defined on an interval I possessing thecontinuousntimesderivative f(n)(x)isdenotedbyCn(I). IftheintervalI containsanendpoint,thederivativeatthispointmayberegardedastheone- sidedderivative. Inparticular,thesetofallcontinuousfunctionsdefinedon I isdenotedbyC(I). (cid:15) Thesignfunctionsgn(x)isdefinedby   1 for x>0, sgn(x)= 0 for x=0, (cid:0)1 for x<0. (cid:15) Wewillreasonablysuppressorabbreviateparenthesesusedinsomecases. For example,wewritesinnθandsin2xinsteadofsin(nθ)and(sinx)2respectively. July31,2007 13:35 WSPC/BookTrimSizefor9inx6in real-analysis Contents Preface v 1. SequencesandLimits 1 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. InfiniteSeries 15 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3. ContinuousFunctions 31 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4. Differentiation 43 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5. Integration 59 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6. ImproperIntegrals 77 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7. SeriesofFunctions 93 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 8. ApproximationbyPolynomials 113 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 ix July31,2007 13:35 WSPC/BookTrimSizefor9inx6in real-analysis x ProblemsandSolutionsinRealAnalysis 9. ConvexFunctions 125 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 10. Variousproofsofζ(2)=π2/6 139 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 11. FunctionsofSeveralVariables 157 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 12. UniformDistribution 171 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 13. RademacherFunctions 181 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 14. LegendrePolynomials 191 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 15. ChebyshevPolynomials 205 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 16. GammaFunction 219 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 17. PrimeNumberTheorem 239 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 18. Miscellanies 257 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 Bibliography 273 Index 285

Description:
This unique book provides a collection of more than 200 mathematical problems and their detailed solutions, which contain very useful tips and skills in real analysis. Each chapter has an introduction, in which some fundamental definitions and propositions are prepared. This also contains many brief
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.