ebook img

Problems and Solutions in Introductory Mechanics PDF

353 Pages·2014·2.164 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Problems and Solutions in Introductory Mechanics

Problems and Solutions in INTRODUCTORY MECHANICS DAVID MORIN Problems and Solutions in INTRODUCTORY MECHANICS David Morin Harvard University 'DavidMorin2014 Allrightsreserved ISBN-10: 1482086921 ISBN-13: 978-1482086928 PrintedbyCreateSpace Coverimage: iStockphotographbyVernonWiley Additionalresourceslocatedat: www.people.fas.harvard.edu/˜djmorin/book.html Contents Preface vii 1 Problem-solvingstrategies 1 1.1 Basicstrategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Solvingproblemssymbolically . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Checkingunits/dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.3 Checkinglimiting/specialcases . . . . . . . . . . . . . . . . . . . . . . 3 1.1.4 Taylorseries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Listofstrategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.1 Gettingstarted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.2 Solvingtheproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.3 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.4 Finishingup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2.5 Lookingahead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3 Howtousethisbook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4 Multiple-choicequestions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.6 Multiple-choiceanswers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.7 Problemsolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2 Kinematicsin1-D 27 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 Multiple-choicequestions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4 Multiple-choiceanswers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.5 Problemsolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3 Kinematicsin2-D(and3-D) 42 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2 Multiple-choicequestions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.4 Multiple-choiceanswers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.5 Problemsolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4 F=ma 68 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.2 Multiple-choicequestions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.4 Multiple-choiceanswers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.5 Problemsolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 iii iv CONTENTS 5 Energy 104 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.2 Multiple-choicequestions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.4 Multiple-choiceanswers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.5 Problemsolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6 Momentum 142 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 6.2 Multiple-choicequestions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 6.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 6.4 Multiple-choiceanswers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 6.5 Problemsolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 7 Torque 177 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 7.2 Multiple-choicequestions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 7.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 7.4 Multiple-choiceanswers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 7.5 Problemsolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 8 Angularmomentum 220 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 8.2 Multiple-choicequestions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 8.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 8.4 Multiple-choiceanswers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 8.5 Problemsolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 9 Statics 251 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 9.2 Multiple-choicequestions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 9.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 9.4 Multiple-choiceanswers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 9.5 Problemsolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 10 Oscillations 265 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 10.2 Multiple-choicequestions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 10.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 10.4 Multiple-choiceanswers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 10.5 Problemsolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 11 Gravity 287 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 11.2 Multiple-choicequestions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 11.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 11.4 Multiple-choiceanswers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 11.5 Problemsolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 12 Fictitiousforces 314 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 12.2 Multiple-choicequestions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 12.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 12.4 Multiple-choiceanswers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 12.5 Problemsolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 CONTENTS v 13 Appendices 331 13.1 AppendixA:Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 13.1.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 13.1.2 Cartesiancoordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 13.1.3 Polarcoordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 13.1.4 Addingandsubtractingvectors . . . . . . . . . . . . . . . . . . . . . . 334 13.1.5 Usingcomponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336 13.1.6 Dotproduct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 13.1.7 Crossproduct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 13.2 AppendixB:Taylorseries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 13.2.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 13.2.2 Howmanytermstokeep? . . . . . . . . . . . . . . . . . . . . . . . . . 340 13.2.3 Dimensionlessquantities . . . . . . . . . . . . . . . . . . . . . . . . . . 341 13.3 AppendixC:Limitingcases,scientificmethod . . . . . . . . . . . . . . . . . . . 342 13.4 AppendixD:Problemsrequiringcalculus . . . . . . . . . . . . . . . . . . . . . 344 Preface This problem book grew out of a “freshman physics” mechanics course taught at Harvard Universityduringthepastdecadeandahalf. Mostoftheproblemsarefromexamsorproblem sets,althoughIhaveaddedotherstoroundoutthedistributionoftopics. Someoftheproblems arestandardones,butmanyareoffthebeatenpath. Intheend,thereisafinitenumberofprin- ciplesinintroductorymechanics,sotheproblemsinevitablystartlookingfamiliarafterawhile. Two topics from the course that aren’t included in this book are relativity and damped/driven oscillatorymotion. Perhapsthesewillappearinafutureedition,alongwithothertopicssuchas fluidsandprecessionalangularmomentum. Thisbookwillbehelpfultobothhigh-schoolstudentsandcollegestudentstakingcoursesin introductoryphysics(justmechanics,notelectricityandmagnetism). Calculusisusedthrough- out the book, although it turns out that only a sixth of the problems actually require it. This subsetofproblemsislistedinAppendixD.Ifyouhaven’tstudiedcalculusyet,juststeerclearof thoseproblems,andyoucanviewthisbookasanalgebra-basedone. Theproblemsaregener- allyontheleveloftheone-starortwo-starproblemsinmyIntroductiontoClassicalMechanics textbook,1whichcoversanumberofmoreadvancedtopicssuchasLagrangians,normalmodes, gyroscopicmotion,etc. Iwilloccasionallyreferyoutothatbookifyouareinterestedindelving furtherintovarioustopics. It is important to note that this book should not be thought of as a textbook. Although thereisanintroductiontoeachchapterwherethebasicsarepresented,thisintroductionisbrief. It is no substitute for the text in a chapter in a standard introductory textbook. This book is thereforedesignedtobeusedintandemwithanormaltextbook. Youcanthinkofthisbookas supplementingatextbookbyprovidingastockpileofadditionalproblems. Oryoucanthinkof atextbookassupplementingthisbookbyprovidingadditionalbackground. Inmostchaptersthefirstfewproblemsarefoundationalones. Theseproblemscoverbasic resultsandtheoremsthatyoucanusewhensolvingotherproblems.Whenabasicresultisstated intheintroductiontoeachchapter,youwillgenerallybereferredtoafoundationalproblemfor theproof. Thebookisselfcontained,inthatwederiveeverythingweneed. It’sjustthatmany ofthederivationsareshiftedtotheproblems. Asetofmultiple-choicequestionsprecedestheproblemsineachchapter. Thesequestions areusuallyconceptualonesthatyoucandoinyourhead. Intherarecasewheretheyrequirea calculation, it is a very minor one. The book contains about 150 multiple-choice questions, in additiontonearly250free-responseproblems. Dependingonhowyouusethisbook,itcanbeaninvaluableresource—oracompletewaste oftime. Sohereissomecriticaladviceonusingthesolutionstotheproblems: Ifyouarehaving trouble solving a problem, it is imperative that you don’t look at the solution too soon. Brood overitforawhile. Ifyoudofinallylookatthesolution,don’tjustreaditthrough. Instead,cover itupwithapieceofpaperandreadonelineatatimeuntilyougetahinttogetstarted. Then setthebookasideandworkouttheproblemforreal. Repeatthisprocessasnecessary. Actively solvingtheproblemistheonlywayitwillsinkin. Thispieceofadviceonhowtousethisbook issoimportantthatI’mgoingtorepeatitanddisplayitprominentlyinabox: 1Introduction to Classical Mechanics, With Problems and Solutions, David Morin, Cambridge University Press, 2008.Thiswillbereferredtoas“Morin(2008).” vii viii CONTENTS Ifyouneedtolookatthesolutiontoaproblemtogetahint(afterhavingthoughtaboutit forawhile),coveritupwithapieceofpaperandreadonelineatatimeuntilyoucanget started. Thensetthebookasideandworkthingsoutforreal. Youwilllearnagreatdealthis way. Ifyouinsteadreadasolutionstraightthroughwithouthavingfirstsolvedtheproblem, youwilllearnverylittle. Theonlyscenarioinwhichyoushouldeverreadasolutionstraightthroughiswhereyou’ve alreadysolvedtheproblem. However,eveninthiscaseyoushouldbecareful. IfI’vegivenan alternativesolution,thenyoushouldagainjustreadonelineatatimeuntilyoucangetstarted andsolveitthatwaytoo. To belabor the point, it is quite astonishing how unhelpful it is to simply read a solution instead of solving a problem. You’d think it would do some good, but in fact it is completely ineffective in raising your understanding to the next level. Of course, a careful reading of the introductionsisnecessarytogetthebasicsdown.Butoncethatisaccomplished,it’stimetostart solving problems. If Level 1 is understanding the basic concepts, and Level 2 is being able to apply those concepts, then you can read and read until the cows come home, and you’ll never getpastLevel1. A few informational odds and ends: We’ll use the standard mks (meter-kilogram-second) systemofunitsinthisbook. Concerningnotation,adotabovealetter,suchas x˙,denotesatime derivative. A boldface letter, such as v, denotes a vector. Chapter 13 consists of appendices: AppendixAgivesareviewofvectors,AppendixBcoversTaylorseries,AppendixCisanaside onthescientificmethod,andAppendixDliststheproblemsthatrequirecalculus. Thereare364 figuresinthebook,whichcoincidentallyisthetotalnumberofgiftsgivenduringthe12daysof Christmas,andwhichironicallyisonegiftforeverydayoftheyearexceptChristmas! Itwasthefallsemesterof2000whenIfirsttaughtthecourseonwhichthisbookisbased,so itwouldbeanunderstatementtosaythatIhavebenefittedovertheyearsfromtheinputofmany people, including roughly 1,000 students. I would particularly like to thank Carey Witkov for carefullyreadingthroughtheentirebookandofferingmanyvaluablesuggestions. Otherfriends andcolleagueswhoseinputIamgratefulforare(withmymemorybeingskewedtowardmore recentyears): JacobBarandes,AllenCrockett,HowardGeorgi,DougGoodale,TheresaMorin Hall,RobHart,PaulHorowitz,RandyKelley,AndrewMilewski,PraharMitra,JoonPahk,Dave Patterson,JoePeidle,CourtneyPeterson,DanielRosenberg,WolfgangRueckner,AlexiaSchulz, NilsSorensen,JoeSwingle,CorriTaylor,andRebeccaTaylor. Despitecarefulediting,thereiszeroprobabilitythatthisbookiserrorfree. Ifanythinglooks amiss, please check the webpage www.people.fas.harvard.edu/˜djmorin/book.html for a list of typos,updates,additionalmaterial,etc. Andpleaseletmeknowifyoudiscoversomethingthat isn’talreadyposted. Suggestionsarealwayswelcome. Happyproblemsolving! DavidMorin Cambridge,MA Chapter 1 Problem-solving strategies TO THE READER: This book is available as both a paperback and an eBook. I have made a few chapters available on the web, but it is possible (based on past experience) that a pirated versionofthecompletebookwilleventuallyappearonfile-sharingsites. Intheeventthatyou arereadingsuchaversion,Ihavearequest: If you don’t find this book useful (in which case you probably would have returned it, if you hadboughtit),orifyoudofinditusefulbutaren’tabletoaffordit,thennoworries;carryon. However, if you do find it useful and are able to afford the Kindle eBook1 (priced somewhere between $7 and $10), then please consider purchasing it (available on Amazon). I chose to self-publishthisbooksothatIcouldkeepthecostlow. Theresultingpriceofaround$10,which is very inexpensive for a 350-page physics book, is less than a movie and a bag of popcorn, withtheaddedbonusthatthebooklastsformorethantwohoursandhaszerocalories(ifused properly!). –DavidMorin 1.1 Basic strategies In view of the fact that this is a problem book, it makes sense to start off by arming you with somestrategiesforsolvingproblems. Thisisthesubjectofthepresentchapter. We’llbeginwith afewstrategiesthatarediscussedsomewhatindepth,andthenwe’llprovidealonglistof30-ish strategies. Youobviouslyshouldn’ttrytomemorizeallofthem. Justrememberthatthelistis there,andreferbacktoiteverynowandthen. 1.1.1 Solvingproblemssymbolically If you are solving a problem where the given quantities are specified numerically, it is highly advantageoustoimmediatelychangethenumberstolettersandthensolvetheprobleminterms of the letters. After you obtain a symbolic answer in terms of these letters, you can plug in theactualnumericalvaluestoobtainanumericalanswer. Therearemanyadvantagestousing letters: (cid:136) It is quicker. It’s much easier to multiply a g by an ℓ by writing them down on a piece of paper next to each other, than it is to multiply their numerical values on a calculator. If solving a problem involves five or ten such operations, the time would add up if you performedalltheoperationsonacalculator. (cid:136) Youarelesslikelytomakeamistake.It’sveryeasytomistypean8fora9inacalculator, butyou’reprobablynotgoingtomiswriteaqforanaonapieceofpaper. Butevenifyou 1Ifyoudon’talreadyhavetheKindlereadingappforyourcomputer,youcandownloaditfreefromAmazon. 1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.