Pablo Soberón Problem-Solving Methods in Combinatorics An Approach to Olympiad Problems Problem-Solving Methods in Combinatorics Pablo Soberón Problem-Solving Methods in Combinatorics An Approach to Olympiad Problems PabloSoberón DepartmentofMathematics UniversityCollegeLondon London,UK ISBN978-3-0348-0596-4 ISBN978-3-0348-0597-1(eBook) DOI10.1007/978-3-0348-0597-1 SpringerBaselHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2013934547 MathematicsSubjectClassification: 05-01,97K20 ©SpringerBasel2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerBaselispartofSpringerScience+BusinessMedia(www.birkhauser-science.com) Contents 1 FirstConcepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 SetsandFirstCountings . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 PathsinBoards . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 ACoupleofTricks. . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 ThePigeonholePrinciple. . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1 ThePigeonholePrinciple . . . . . . . . . . . . . . . . . . . . . . 17 2.2 RamseyNumbers . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 TheErdo˝s-SzekeresTheorem . . . . . . . . . . . . . . . . . . . . 22 2.4 AnApplicationinNumberTheory . . . . . . . . . . . . . . . . . 23 2.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1 DefinitionandFirstExamples . . . . . . . . . . . . . . . . . . . . 27 3.2 Colorings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3 ProblemsInvolvingGames . . . . . . . . . . . . . . . . . . . . . 33 3.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4 GraphTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.1 BasicConcepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 ConnectednessandTrees . . . . . . . . . . . . . . . . . . . . . . 47 4.3 BipartiteGraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.4 Matchings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.1 FunctionsinCombinatorics . . . . . . . . . . . . . . . . . . . . . 59 5.2 Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.3 CountingTwice . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.4 TheErdo˝s-Ko-RadoTheorem . . . . . . . . . . . . . . . . . . . . 72 5.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6 GeneratingFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.1 BasicProperties . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 v vi Contents 6.2 FibonacciNumbers . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.3 CatalanNumbers. . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.4 TheDerivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.5 EvaluatingGeneratingFunctions . . . . . . . . . . . . . . . . . . 87 6.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 7 Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 7.1 Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 7.2 StirlingNumbersoftheFirstKind . . . . . . . . . . . . . . . . . 94 7.3 StirlingNumbersoftheSecondKind . . . . . . . . . . . . . . . . 96 7.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 8 HintsfortheProblems . . . . . . . . . . . . . . . . . . . . . . . . . . 101 8.1 HintsforChap.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 8.2 HintsforChap.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 8.3 HintsforChap.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 8.4 HintsforChap.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 8.5 HintsforChap.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 8.6 HintsforChap.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 8.7 HintsforChap.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 9 SolutionstotheProblems . . . . . . . . . . . . . . . . . . . . . . . . 113 9.1 SolutionsforChap.1 . . . . . . . . . . . . . . . . . . . . . . . . 113 9.2 SolutionsforChap.2 . . . . . . . . . . . . . . . . . . . . . . . . 120 9.3 SolutionsforChap.3 . . . . . . . . . . . . . . . . . . . . . . . . 128 9.4 SolutionsforChap.4 . . . . . . . . . . . . . . . . . . . . . . . . 138 9.5 SolutionsforChap.5 . . . . . . . . . . . . . . . . . . . . . . . . 146 9.6 SolutionsforChap.6 . . . . . . . . . . . . . . . . . . . . . . . . 156 9.7 SolutionsforChap.7 . . . . . . . . . . . . . . . . . . . . . . . . 164 Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Introduction Everyyearthereisatleastonecombinatoricsproblemineachofthemajormath- ematical olympiads of international level. These problems have the common trait of needing a very high level of wit and creativity to find a solution. Even in the most recent competitions there are difficult problems that can be solved almost completelybyasinglebrilliantidea.However,tobeabletoattacktheseproblems withcomfortitisnecessarytohavefacedproblemsofsimilardifficultypreviously and to have a good knowledge of the techniques that are commonly used to solve them. I write this book with two purposes in mind. The first is to explain the tools and tricks necessary to solve almost any combinatorics problems in international olympiads, with clear examples of how they are used. The second way to offer to the olympicstudents(and other interestedreaders) anamplelist of problemswith hints and solutions. This book may be used for training purposes in mathematical olympiadsoraspartofacourseincombinatorics. Despitethefactthatthisbookisself-contained,previouscontactwithcombina- toricsisadvisableinordertograsptheconceptswithease.Inthesection“Further reading”wesuggestmaterialforthispurpose.Readingthiswouldbeespeciallyuse- fulforfamiliarizingwiththenotationandbasicideas.Itisalsorequiredtohavea basicunderstandingofcongruencesinnumbertheory. The book is divided into 7 chapters of theory, a chapter of hints and a chapter of solutions. The theory chapters provide examples and exercises along the text andendwithaproblemssection.Intotalthereare 127 problemsinthebook.The purposeoftheexercisesisforthereadertostartusingtheideasofthechapter.There arenohintsnorsolutionsfortheexercises,astheyare(almostalways)easierthan theproblems.Allexamplesandproblemshavesolutions. Althoughthetextisintendedtobereadintheorderitispresented,itispossible toreaditfollowingthediagrambelow. vii viii Introduction Many of the problems and examples of this book have appeared in mathematical contests,soIhavetriedtoprovidereferencestotheirfirstappearance.Iapologize ifanyaremissingorjustplainwrong.Attheendofthebook,wherethenotationis explained,thereisalistofabbreviationsthatwereusedtomakethesereferences. IwouldliketothankRadmilaBulajichforbothteachingmethenecessaryLATEX to write this book and to motivating me to do so. Without her support this project wouldhaveneverbeenbroughttocompletion.Iwouldalsoliketothanktheexten- sive corrections and comments by Leonardo Martínez Sandovalas well as the ob- servationsbyAdriánGonzález-CasanovaSoberónandCarlaMárquezLuna.Their helpshapedthisbooktoitspresentform. PabloSoberón FortheStudent Eventhoughalargenumberofproblemsincombinatoricshaveaquickand/oreasy solution,thatdoesnotmeantheproblemonehastosolveisnothard.Manytimes thedifficultyofaproblemincombinatoricsliesinthefactthattheideathatworksis verywell“hidden”.Duetothistheonlywaytoreallylearncombinatoricsissolving manyproblems,ratherthanreadingalotoftheory.Thispracticeispreciselywhat teachesyouhowtolookforthesecreativeorhiddenideas. Asyoureadthetheoryyouwillfindexercisesandexamples.Itisimportanttodo themastheycomealong,sincemanyofthemareanimportantpartofthetheoryand willbeusedrepeatedlylateron.Whenyoufindanexample,trytosolveitbyyour- selfbeforereadingthesolution.Thisistheonlywaytoseethecomplicationsthat particularproblembrings.Bydoingthisyouwillhaveaneasiertimeunderstanding whytheideasinthesolutionworkandwhytheyshouldbenatural. Introduction ix Attheendofeachchapterthereisasectionwithproblems.Theseproblemsare meanttobeharderthantheexercisesandtheyhavehintsandsolutionsattheendof the book. Many problems are of an international competition level, so you should notbecomediscouragedifyoufindaparticularlydifficultone. Someproblemshavemorethanonesolution.Thisdoesnotmeanthatthesesolu- tionsaretheonlyones.Chaseyourownideasandyouwillprobablyfindsolutions thatdifferfromtheonespresentedinthisbook(andperhapsareevenbetter).Thus, when you reach a problems section, do not restrict yourself to the tools shown in thatchapter. Finally,mymainobjectivewhenwritingthisbookwasnotsimplytoteachcom- binatorics, but for the book to be enjoyed by its readers. Take it easy. Remember thatsolvingproblemsisadisciplinethatislearnedwithconstantpracticeandleads toagreatsenseofsatisfaction. 1 First Concepts 1.1 SetsandFirstCountings A set is defined to be a “collection of elements contained within a whole”. That is, a set is defined only by its elements, which can also be sets. When we write {a,b,c}=S,wemeanthat S is theset thathastheelements a, b, c.Twosets are equalif(andonlyif)theyhavethesameelements.Toindicatethata isanelement ofS,wewritea∈S.Inasetweneverrepeatelements,theycanjustbeinthesetor notbethere. Given a set A and a property ψ, we denote by {a ∈A|ψ(a)} the set of all elementsofAthatsatisfypropertyψ.Forexample,{a∈R|a>2}isthesetofall realnumbersthataregreaterthan2.Byconvention,thereisanemptyset.Thatis, asetwithnoelements.Oneusuallydenotesthatsetwiththesymbol∅. Whenwesaythatasethastobecontainedwithinawhole,wemeanthatitshould notbe“toobig”.Thisisaverytechnicaldetail,buttherearecollections(suchasthe collectionofallsets)thatbringdifficultiesifweconsiderthemassets.Throughout thisbookwewillneverfacethiskindofdifficulties,evenwhenwetalkaboutinfinite sets.However,itisimportanttoknowthattherearecollectionsthatarenotsets.1 GiventwosetsAandB,wesaythatAisasubsetofB,orthatAiscontained in B, if every element of A is an element of B. We denote this by A⊂B. For example{1,2}⊂{1,{1,3},2}since1and2areelementsofthesecondset.However, {1,3}(cid:5)⊂{1,{1,3},2}since3isnotanelementinthesecondset. GiventwosetsAandB,wecanusethemtogenerateothersets. • A∩B,calledtheintersectionofAandB.Thisisthesetthatconsistsofallthe elementsthatareinbothAandB. • A∪B,calledtheunionofAandB.Thisisthesetthatconsistsalltheelements thatareinatleastoneofAorB. 1Ifyouwantanexampleofthis,considerRussell’sparadox.LetS bethecollectionofallsets thatdonotcontainthemselvesaselements,i.e.,allsetsAsuchthatA∈/A.IfSisconsideredasa set,thenS∈SifandonlyifS∈/S,acontradiction! P.Soberón,Problem-SolvingMethodsinCombinatorics, 1 DOI10.1007/978-3-0348-0597-1_1,©SpringerBasel2013
Description: