ebook img

Problem-Solving and Selected Topics in Euclidean Geometry: In the Spirit of the Mathematical Olympiads PDF

235 Pages·2013·3.05 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Problem-Solving and Selected Topics in Euclidean Geometry: In the Spirit of the Mathematical Olympiads

Sotirios E. Louridas · Michael Th. Rassias Problem-Solving and Selected Topics in Euclidean Geometry In the Spirit of the Mathematical Olympiads Foreword by Michael H. Freedman Problem-Solving and Selected Topics in Euclidean Geometry Sotirios E. Louridas (cid:2) Michael Th. Rassias Problem-Solving and Selected Topics in Euclidean Geometry In the Spirit of the Mathematical Olympiads Foreword by Michael H. Freedman SotiriosE.Louridas MichaelTh.Rassias Athens,Greece DepartmentofMathematics ETHZurich Zurich,Switzerland ISBN978-1-4614-7272-8 ISBN978-1-4614-7273-5(eBook) DOI10.1007/978-1-4614-7273-5 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2013938266 MathematicsSubjectClassification: 51-XX,51-01 ©SpringerScience+BusinessMediaNewYork2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Foreword Geometry has apparently fallen on hard times. I learned from this excellent trea- tise on plane geometry that U.S. President James A. Garfield constructed his own proof of the Pythagorean Theorem in 1876, four years before being elected to an unfortunatelybriefpresidency. Inarecentlecture,ScottAaronson(MIT)offeredatongue-in-cheekanswertothe question:“SupposethereisashortproofthatP (cid:2)=NP?”with,“Supposespacealiens assassinated President Kennedy to prevent him from discovering such a proof?” Ifounditpleasanttowonderwhichhalfofthetwoclauseswaslessprobable.Sadly he concluded that it was more likely that space aliens were behind Kennedy’s as- sassinationthanthatamodernpresidentwouldbedoingmathematics.Perhapsthis bookoffershopethatwhatwaspossibleoncewillbepossibleagain. Young people need such texts, grounded in our shared intellectual history and challenging them to excel and create a continuity with the past. Geometry has seemeddestinedtogivewayinourmoderncomputerizedworldtoalgebra.Aswith MichaelTh.Rassias’previoushomonymousbookonnumbertheory,itisapleasure toseethementaldisciplineoftheancientGreekssowellrepresentedtoayouthful audience. MicrosoftStationQ MichaelH.Freedman CNSIBldg.,Office2245 UniversityofCalifornia SantaBarbara,CA93106-6105 USA v Acknowledgements We feel deeply honored and grateful to Professor Michael H. Freedman, who has writtentheForewordofthebook. We would like to express our thanks to Professors D. Andrica, M. Bencze, S. Markatis, and N. Minculete for reading the manuscript and providing valuable suggestions and comments which have helped to improve the presentation of the book.WewouldalsoliketothankDr.A.Magkosforhisusefulremarks. WewouldliketoexpressourappreciationtotheHellenicMathematicalSociety for the excellentprogram of preparation of the young contestantsfor their partici- pationinMathematicalOlympiads. LastbutnotleastwewouldliketoofferourthankstoDr.F.I.Travlopanosforhis invaluablehelpandforhisusefulsuggestions. Finally,itisourpleasuretoacknowledgethesuperbassistanceprovidedbythe staffofSpringerforthepublicationofthebook. SotiriosE.Louridas MichaelTh.Rassias vii Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 TheOriginofGeometry . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 AFewWordsAboutEuclid’sElements . . . . . . . . . . . . . . . 3 2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 BasicConceptsofLogic . . . . . . . . . . . . . . . . . . . 5 2.1.2 OnRelatedPropositions . . . . . . . . . . . . . . . . . . . 7 2.1.3 OnNecessaryandSufficientConditions . . . . . . . . . . 8 2.2 MethodsofProof . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 ProofbyAnalysis . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 ProofbySynthesis . . . . . . . . . . . . . . . . . . . . . . 12 2.2.3 ProofbyContradiction . . . . . . . . . . . . . . . . . . . 13 2.2.4 MathematicalInduction . . . . . . . . . . . . . . . . . . . 15 3 FundamentalsonGeometricTransformations . . . . . . . . . . . . . 19 3.1 AFewFacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2.1 ExamplesonTranslation . . . . . . . . . . . . . . . . . . 23 3.3 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3.1 SymmetrywithRespecttoaCenter . . . . . . . . . . . . . 25 3.3.2 SymmetrywithRespecttoanAxis . . . . . . . . . . . . . 25 3.4 Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4.1 ExamplesofRotation . . . . . . . . . . . . . . . . . . . . 29 3.5 Homothety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.5.1 ExamplesofHomothety . . . . . . . . . . . . . . . . . . . 36 3.6 Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.6.1 InverseofaPoint . . . . . . . . . . . . . . . . . . . . . . 39 3.6.2 InverseofaFigure . . . . . . . . . . . . . . . . . . . . . . 39 3.6.3 AnInvarianceProperty . . . . . . . . . . . . . . . . . . . 40 3.6.4 BasicCriterion . . . . . . . . . . . . . . . . . . . . . . . . 40 ix x Contents 3.6.5 AnotherInvarianceProperty . . . . . . . . . . . . . . . . . 41 3.6.6 InvertibilityandHomothety . . . . . . . . . . . . . . . . . 41 3.6.7 TangenttoaCurveandInversion . . . . . . . . . . . . . . 41 3.6.8 InversionandAngleofTwoCurves . . . . . . . . . . . . . 43 3.6.9 ComputingDistanceofPointsInversetoaThirdOne . . . 43 3.6.10 InverseofaLineNotPassingThroughaPole . . . . . . . 44 3.6.11 InverseofaCirclewithRespecttoaPoleNotBelonging totheCircle . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.6.12 InverseofaFigurePassingThroughthePoleofInversion . 46 3.6.13 OrthogonalCirclesandInversion . . . . . . . . . . . . . . 47 3.6.14 ApplicationsoftheInversionOperation . . . . . . . . . . . 48 3.7 TheIdeaBehindtheConstructionofaGeometricProblem . . . . . 51 4 Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.1 GeometricProblemswithBasicTheory . . . . . . . . . . . . . . . 79 5.2 GeometricProblemswithMoreAdvancedTheory . . . . . . . . . 82 5.3 GeometricInequalities . . . . . . . . . . . . . . . . . . . . . . . . 88 6 Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.1 GeometricProblemswithBasicTheory . . . . . . . . . . . . . . . 93 6.2 GeometricProblemswithMoreAdvancedTheory . . . . . . . . . 124 6.3 GeometricInequalities . . . . . . . . . . . . . . . . . . . . . . . . 187 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 A.1 TheGoldenSection . . . . . . . . . . . . . . . . . . . . . . . . . 215 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 IndexofSymbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 SubjectIndex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 Chapter 1 Introduction μημoυτoυςκυ´κλoυςτα´ραττ(cid:10). (Donotdisturbmycircles.) Archimedes(287BC–212BC) In this chapter, we shall present an overview of Euclidean Geometry in a general, non-technicalcontext. 1.1 TheOriginofGeometry Generally, we could describe geometry as the mathematical study of the physical worldthatsurroundsus,ifweconsiderittoextendindefinitely.Morespecifically, we could define geometry as the mathematical investigation of the measure, the propertiesandrelationshipsofpoints,lines,angles,shapes,surfaces,andsolids. It is commonly accepted that basic methods of geometry were first discovered andusedineverydaylifebytheEgyptiansandtheBabylonians.Itisremarkablethat they could calculate simple areas and volumesand they had closely approximated thevalueofπ (theratioofthecircumferencetothediameterofacircle). However,eventhoughtheEgyptiansandtheBabylonianshadundoubtedlymas- teredsomegeometricaltechniques,theyhadnotformedamathematicalsystemof geometryasatheoreticalsciencecomprisingdefinitions,theorems,andproofs.This wasinitiatedbytheGreeks,approximatelyduringtheseventhcenturyBC. It is easy to intuitively understand the origin of the term geometry, if we ety- mologicallystudythemeaningoftheterm.Thewordgeometryoriginatesfromthe Greekwordγ(cid:10)ωμ(cid:10)τρι´α,whichisformedbytwootherGreekwords:Thewordγη, whichmeansearthandthewordμ(cid:10)´τρoν,whichmeansmeasure.Hence,geometry actually means the measurement of the earth, and originally, that is exactly what itwasbeforetheGreeks.Forexample,inapproximately240BC,theGreekmath- ematician Eratosthenes used basic but ingenious methods of geometry that were developedtheoreticallybyseveralGreekmathematiciansbeforehistimeinorderto measuretheEarth’scircumference.Itisworthmentioningthathesucceededtodo so,withanerroroflessthan2%incomparisontotheexactlengthofthecircumfer- enceasweknowittoday.Therefore,itisevidentthatgeometryarosefrompractical activity. S.E.Louridas,M.Th.Rassias,Problem-SolvingandSelectedTopicsin 1 EuclideanGeometry,DOI10.1007/978-1-4614-7273-5_1, ©SpringerScience+BusinessMediaNewYork2013 2 1 Introduction Geometrywasdevelopedgraduallyasanabstracttheoreticalsciencebymathe- maticians/philosophers,suchasThales,Pythagoras,Plato,Apollonius,Euclid,and others.Morespecifically,Thales,apartfromhisintercepttheorem,isalsothefirst mathematiciantowhomtheconceptofproofbyinductionisattributed.Moreover, PythagorascreatedaschoolknownasthePythagoreans,whodiscoverednumerous theoremsingeometry.Pythagorasissaidtobethefirsttohaveprovidedadeductive proofofwhatisknownasthePythagoreanTheorem. Theorem1.1(PythagoreanTheorem) Inanyrighttrianglewithsidesoflengthsa, b,c,wherecisthelengthofthehypotenuse,itholds a2+b2=c2. (1.1) Theabovetheoremhascapturedtheinterestofbothgeometersandnumbertheo- ristsforthousandsofyears.Hundredsofproofshavebeenpresentedsincethetime of Pythagoras.It is amusingto mentionthat eventhe 20thpresident of theUnited States, J.A. Garfield, was so much interested in this theorem that he managed to discoveraproofofhisown,in1876. The number theoretic aspect of the Pythagorean Theorem is the study of the integervalues a, b, c,whichsatisfyEq.(1.1).Suchtriplesofintegers (a,b,c) are called Pythagorean triples [86]. Mathematicians showed a great interest in such propertiesofintegersandwereeventuallyleadtotheinvestigationofthesolvability ofequationsoftheform an+bn=cn, wherea,b,c∈Z+ andn∈N,n>2. ThesestudiesleadafterhundredsofyearstoWiles’celebratedproofofFermat’s LastTheorem[99],in1995. Theorem1.2(Fermat’sLastTheorem) Itholds an+bn(cid:2)=cn, foreverya,b,c∈Z+ andn∈N,n>2. Let us now go back to the origins of geometry. The first rigorous foundation which made this discipline a well-formed mathematical system was provided in Euclid’sElementsinapproximately300BC. The Elements are such a unique mathematical treatise that there was no need foranykindofadditionsormodificationsformorethan2000years,untilthetime of the great Russian mathematician N.I. Lobac˘evski˘i (1792–1856) who developed anewtypeofgeometry,knownashyperbolicgeometry,inwhichEuclid’sparallel postulatewasnotconsidered.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.