Astronomy&Astrophysicsmanuscriptno.18127 c ESO2012 (cid:13) January9,2012 Probing the turbulent mixing strength in protoplanetary disks across the stellar mass range: no significant variations. GijsD.Mulders1,2 andCarstenDominik1,3 1 AstronomicalInstitute“AntonPannekoek”,UniversityofAmsterdam,POBox94249,1090GEAmsterdam,TheNetherlands 2 SRONNetherlandsInstituteforSpaceResearch,POBox800,9700AV,Groningen,TheNetherlands 3 DepartmentofAstrophysics/IMAPP,RadboudUniversityNijmegen,P.O.Box90106500GLNijmegenTheNetherlands Preprintonlineversion:January9,2012 2 ABSTRACT 1 0 Context.Dust settlingandgraingrowtharethefirststepsintheplanet-formationprocess inprotoplanetary disks. Thesedisksare 2 observedaroundstarswithdifferentspectraltypes,andthereareindicationsthatthedisksaroundlowermassstarsaresignificantly n flatter,whichcouldindicatethattheysettleandevolvefaster,orinadifferentway. a Aims.Weaimtotestthisassumptionbymodelingthemedianspectralenergydistributions(SEDs)ofthreesamplesofprotoplanetary J disks:aroundHerbigstars,TTauristarsandbrowndwarfs.Wefocusontheturbulentmixingstrengthtoavoidastrongobservational 6 biasfromdiskandstellarpropertiesthatdependonstellarmass. Methods.WegeneratedSEDswiththeradiativetransfercodeMCMax,usingahydrostaticdiskstructureandsettlingthedustina ] self-consistentwaywiththeα-prescriptiontoprobetheturbulentmixingstrength. P Results.Weareabletofitallthreesampleswithadiskwiththesameinputparameters,scalingtheinneredgetothedustevaporation E radiusanddiskmasstomillimeterphotometry.TheHerbigstarsrequireaspecialtreatmentfortheinnerrimregions,whiletheT-Tauri . starsrequireviscousheating,andthebrowndwarfslackagoodestimateofthediskmassbecauseonlyfewmillimeterdetectionsexist. h Conclusions.Wefindthattheturbulentmixingstrengthdoesnotvaryacrossthestellarmassrangeforafixedgrainsizedistribution p andgas-to-dustratio.Regionswiththesametemperaturehaveaself-similarverticalstructureindependentofstellarmass,butregions - atthesamedistancefromthecentral starappear moresettledindisksaround lowermassstars.Wefindarelativelylowturbulent o mixingstrengthofα = 10 4 forastandardgrainsizedistribution,butourresultsarealsoconsistentwithα = 10 2 foragrainsize r − − t distributionwithfewersmallgrainsoralowergas-to-dustratio. s a Keywords.protoplanetarydisks-stars:pre-main-sequence-radiativetransfer-dustsettling-graingrowth [ 1 v 1. Introduction fromdiskmodelstryingtomatchaccretionratesisα =0.01 viscous 3 (e.g. Hartmannetal. 1998). Comparison of steady-state accre- 5 Protoplanetary disks are the main sites of planet formation. tiondiskmodelstomillimeterimagesyieldsα =0.5...10 4 4 Withinthem,thesmallsub-micronsizeddustgrainsgrowtomil- (Isellaetal.2009). viscous − 1 limeter and centimeter sizes and settle to the midplane, where Theturbulentmixingstrengthmanifestsitself inthedegree . 1 they eventually form kilometer-sized planetesimals and proto- ofdustsettling.Whendustgrainsgrowtolargersizes,theyde- 0 planets that are the building blocks of planetary systems. How couple from the gas and start settling toward the midplane. At 2 thedustgrowsandsettlesdependsnotonlyonthegrainsizeand what size and height they decouple depends not only on the 1 gasdensity,butalsoontheturbulentmixingstrengthofthegas gas density and temperature but also on the turbulent mixing : that mixes small grains back up into the disk atmosphere and v strength:alowerturbulentmixingstrengthleadstoflatterdisks i makesthem collideinthe midplane.Withoutturbulentmixing, (e.g.Dullemond&Dominik2004b).Asdustdecouples,itsrel- X alldiskswouldbeflatanddustwouldgrowslower.Additionally, ativevelocityalsoincreases,whichleadstofragmentation,pro- r turbulentmixingisanimportantdriverfortheviscousevolution a vidinganaturalstoptograingrowthandreplenishingthesmall of the disk, for radial mixing of dust, and it may also play an dustgrainpopulationthatisthenmixedupintothedisksurface importantroleinthelaterstagesofplanetformation. (Dullemond&Dominik2005). Although turbulent mixing is fundamental for our under- Thereisbynowawealthofobservationalevidencesupport- standingofdiskevolutionandplanetformation,thecauseofdisk inggraingrowthanddustsettlinginprotoplanetarydisks.Most turbulenceisnotcompletelyunderstood(e.g.Balbus&Hawley notably, mid-infrared spectroscopic observations have shown 1998; Armitage 2011). Turbulent mixing in disks is often im- that grains in the warm surface layers have grown beyond the plemented using the α prescription from Shakura&Sunyaev sizeofamicron(e.g.Henning&Meeus2009).Inaddition,the (1973)andPringle(1981),butthevalueoftheturbulentmixing spectral index at (sub)millimeter and centimeter wavelengths strength α is hard to predict from theory. Although it could turb shows that grains grow up to centimeter sizes in the cold disk be empirically derivedfrom line-broadeningwith future obser- midplane(e.g.Beckwith&Sargent1991;Mannings&Emerson vatoriessuch as ALMA, this is challengingwith currentfacili- 1994). This picture has been confirmedwith hydrostatic radia- ties(Hughesetal.2011).Thevaluetypicallyusedandinferred tivetransfermodelsbyD’Alessioetal.(2006)andFurlanetal. (2005) for T Tauri stars, who require a depletion of small dust Sendoffprintrequeststo:GijsMulders,e-mail:[email protected] grains at the disk surface and a population of big grains in the 1 Mulders&Dominik:Probingturbulentmixingacrossthestellarmassrange disk midplane. Without grain growth and dust settling, hydro- T_initial T_dust T_final staticdiskmodelsoverpredictobservedfar-infraredfluxes. Interestinglyenough,thisseemsnottobethecaseforHerbig Ae and Be stars, the intermediatemasscounterpartsof T Tauri vertical radiative stars.Hydrostaticdiskmodelsdowellinexplainingfar-infrared fluxes without the need to deplete the upper layers of the disk structure transfer (Dominiketal.2003;Dullemond&Dominik2004a;Ackeetal. 2009),especiallyinMeeusgroupIsources1.However,the(sub) millimeter slopes show that a population of millimeter-sized grains exist in these disks as well (e.g. Ackeetal. 2004), indi- rho rho catingthatthegrain-sizepopulationisnotthatdifferentfromT gas dust Tauristars.Thisopensupthepossibilitythatthesedisksareless settled,andthatdiskproperties-inparticulartheturbulentmix- dust ingstrength- couldvarystronglyas a functionofstellar mass. settling Therecentdiscoverythatdisksaroundbrowndwarfsappearto bemoresettledthanTTauristarsfitswellintothispicture(e.g. Ladaetal.2006;Szu˝csetal.2010),althoughthisisnotalways Fig.1. Artist impression of vertical structure iterations in found(Furlanetal.2011),andindicatesthattheobserveddegree MCMax to determine the vertical structure. Model parameters ofsettlingcouldbeinverselyproportionaltostellarmass. aredisplayedinblackonwhite,partsofthecodeasblueblocks. However,the degreeofsettling doesnotdirectlyreflectthe Treferstothetemperature,rhotothedensity. turbulent mixing strength. Disks around T Tauri stars, Herbig starsand browndwarfsvaryin disk mass (e.g. Beckwithetal. 1990; Scholzetal. 2006; Vorobyov 2009) and stellar mass, and observations at the same wavelength probe different ra- combined with the method of continuous absorption by Lucy dial regions in the disk because of the changing stellar lumi- (1999). The code has been benchmarked against other radia- nosity. Comparing the degree of settling using a fixed height tivetransfercodesformodelingprotoplanetarydisks(Pinteetal. or a lower scale height for bigger grains (e.g. D’Alessioetal. 2009).Theradialgridaroundtheinnerradiusanddiskwallisre- 2006; Sauter&Wolf 2011) is therefore less suitable for com- finedtosampletheopticaldepthlogarithmically.TheSEDand parison along the stellar mass range. Radiative transfer mod- images are calculated by integrating the formal solution to the els that describe dust settling using turbulent mixing exist equationofradiativetransferbyray-tracing. (Dullemond&Dominik2004b;Hasegawa&Pudritz2010),but Inadditiontoradiativetransfer,thecodecanexplicitlysolve havenotbeenusedtocomparetoobservationsdirectly. for the verticalstructure of the disk. With the implicitassump- To constrain the turbulent mixing strength across the stel- tionthatthegastemperatureissetbythedusttemperature,the lar mass range, we focused primarily on median spectral en- vertical structure of the gas can be calculated by solving the ergydistributions(SEDs).Wedidthisbecausemeasuringthede- equation of hydrostatic equilibrium. On top of that, the dust greeofsettlinginindividualdisksisnotstraightforwardbecause can be settled with respect to the gas, which we will describe of a number of degeneracies in disk modeling (Sauter&Wolf in section 2.2. After calculating the new structure for the dust, 2011),andrequiresdetailedmultiwavelengthmodeling,includ- theradiativetransfercodecanberuntoobtainanewdusttem- ing scattered-light images (Pinteetal. 2008), but conclusions perature,andthewholeprocedure(radiativetransfer,gasstruc- can be drawn from larger samples (Furlanetal. 2005, 2006). ture, dust settling) can be iterated until convergenceis reached TheyareavailableforbothTTauristars(e.g. Furlanetal.2005; (Figure 1). The temperature structure usually convergeswithin D’Alessioetal. 2006), and brown dwarfs (Szu˝csetal. 2010), fiveiterations.Theexactnumberofiterationsdependsondisks andasubstantialsampleisavailabletoconstructthemforHerbig parameters.Ingeneral,verysettledor’flat’diskstakelongerto starsaswell(e.g.Ackeetal.2009;Juha´szetal.2010). convergebecausetheydeviatemorefromtheinitialguess. We will describe how dust settling is implemented in our radiative transfer code in section 2, and compare the available approachesthatuse theturbulentmixingstrength.Insection3, 2.2.Dustsettling wewillusethismodeltoconstraintheturbulentmixingstrength To settle the dust with respect to the gas, we used the for- fromthemedianSEDsofTTauristars,Herbigstarsandbrown malism byDullemond&Dominik(2004b). We willbrieflyde- dwarfs, which were constructed in appendixA and B. We will scribe the basic assumptions, and refer to the previously men- discusswhatthemediandiskmodellookslikeinsection4,and tioned paper for details. We compare our approach to that of whetherdisksaroundlowermassstarsareflatterormoresettled Hasegawa&Pudritz(2010)insection2.2.2,whousedthemid- thantheirhigh-masscounterparts.Wesummarizeourfindingsin plane formalism by Dubrulleetal. (1995) in combination with section5. radiativetransfermodels. 2. Model 2.2.1. Theory 2.1.Diskmodel The vertical motion of dust particles within the disk is a bal- ThediskmodelusedinthispaperisMCMax(Minetal.2009), ance of the downwardmotioncaused by the gravityof the star a2DMonteCarloradiativetransfercode.Itisbasedontheim- versus the mainly upward motion caused by turbulent mixing. mediatere-emissionprocedurefromBjorkman&Wood(2001), Comparing the timescales for both processes (the friction time 1 WenotethatforgroupIIsources,somesettlingmayberequiredto tfric versustheeddyturn-overtimetedd)resultsinanexpression settletheouterdiskintotheinnerdiskshadow. fortheStokesnumberSt,whichdescribeshowwellthedustis 2 Mulders&Dominik:Probingturbulentmixingacrossthestellarmassrange coupledtothegasateverylocationinthedisk: t 3m Ω St= fric = k , (1) t 4σρ c edd gas s wherem/σis the mass-to-surfaceratio ofthe dustgrain,Ω = k GM /r3 the Keplerian frequency, ρ is the local gas den- gas sity an∗d c = kT/µm the local sound speed for the mean s proton p molecular weight µ. A Stokes number smaller than one means the dust is well coupled to the gas, whereas particles decou- ple from the gas at larger Stokes numbers. Using this expres- sion for the dust-gas coupling and the standard α prescription from Shakura&Sunyaev (1973) in the form of Pringle (1981) (ν=αc H ),thediffusioncoefficientforadustparticleatevery s p locationinthediskcanbewrittenas2 c H s p D=α , (2) turb1+St2 whereH = c /Ω isthelocalpressurescaleheightandα is p s k turb theturbulentmixingstrength. Taking the gas density and temperature structure from the radiative transfer and hydrostatic structure calculation, we can nowsolvefortheverticalstructureofadustgrainofcertainsize ρ at every location in the disk by solving a vertical diffusion a equation: ∂ρ (z) ∂ ∂ ρ (z) ∂ a = D (z)ρ a ρ v (z) , (3) ∂t ∂z a gas∂z ρ − ∂z a sett,a gas !! (cid:0) (cid:1) where v (z) is the local settling speed for that dust grain in sett,a the absence of turbulent mixing. This equation is then solved in a time-dependent way using implicit integration. Because Fig.2. Dust-to-gasratio versus relative height (z/r) in the mid- the timescalesonwhichthedisk settles towardequilibriumare infraredemitting regionof the T Tauri star at 10 AU using the shorter than one million years(Dullemond&Dominik2004b), self-consistentsettling(top)andthemidplanesettlingapproach wejumptowardequilibriumintenrelativelylargetimesteps. (bottom)withthesamegasdensitydistribution.Theblacksolid We assumed that the turbulent mixing strength is constant line representsthe total dust-to-gasratio, the gray lines denote throughout the disk. There is no a priori reason to do so, nor the individual contributions of grains of different sizes, from a computationalone,and there are indicationsfor variationsin 0.02micron(dotted)to6mm(solid).Thedottedlinerepresents both the vertical (Fromang&Nelson 2009; Simonetal. 2011) a fully mixed disk, with a dust-to-gas ratio of 0.01. The radial and radial (Isellaetal. 2009) direction. However, because we τ=1 surface in the optical is located at a relative height of ap- cannotconstrainthesevariationsfromthedatausedinthispaper, proximately0.16and0.2. wekeptαconstant. 2.2.2. Impactondiskstructure The well-mixed model has a uniform dust-to-gas ratio of 0.01,whereasthesettledmodelsshowacleartrendfromanin- The main difference between this approach and that by creaseddust-to-gasrationearthemidplanetoa decreasedratio Dubrulleetal. (1995) is that we used the local sound speed near and above the surface, which is located around z/r 0.18 and gas density to calculate the dust-gas coupling. Their ap- ∼ (radialτ = 1surfaceintheoptical).Thisiscausedbystratifica- proach is an analytical solution for modeling the dust distri- tion,thesettling ofdifferentdustspeciestodifferentheightsin bution in the isothermal midplane, and uses only the midplane thedisk.Inthemidplane,themidplanesettlingapproachagrees density and temperature. Hence, we will refer to the latter as verywellwith the self-consistentsettling, whichis also the re- midplane settling, though it is sometimes applied outside this gion that the former has been constructed for (Dubrulleetal. regime (Hasegawa&Pudritz 2010). To compare the different 1995). approaches,we havedisplayedthe verticalstructureatthe first Closer to the disk surface, the two settled models start to iterationinaverticalslabcenteredat10AUinFigure2.Because deviate.Withincreasingheightabovethemidplane,thegasden- thismodelhasnotbeeniterated,theverticalstructureofthegas sity decreases. For the self-consistent settling, this means that iscalculatedfromtheopticallythindusttemperature,andcorre- smaller particles will decouple from the gas. For each particle spondstoaGaussian. size, there is a characteristic height above the midplane where 2 WeusedaSchmidtnumberof1+St2followingYoudin&Lithwick the coupling is so weak that they are almost fully depleted (2007),ratherthan1+StfromDullemond&Dominik(2004b).Because (Dullemond&Dominik2004b).Forparticlesdowntoasizeof thisdoesnotchangethepointwhereparticlesdecoupleatSt=1,ithasa roughly1micron,thisdecouplingtakesplacebelowthedisksur- verylimitedinfluenceonourmodel. face,butsmallergrainscanstillbefoundabovethedisksurface. 3 Mulders&Dominik:Probingturbulentmixingacrossthestellarmassrange Fig.3.Dusttemperaturesversusrelativeheightinaverticalslab Fig.4. Dust opacities for the different grain sizes used in this centeredat10AU foraT Tauristar,showingthatstratification paper. in dustsize leadsto a stratification in dusttemperature.Shown aretheself-consistentmodel(solidline),thesettlingrecipefrom Dubrulle(dottedline)anda well-mixedmodelwithoutsettling forcomparison(dashedline). fraction of 15 % carbon, a value found from modeling this ra- tio in Herbig Ae/Be stars (Meijeretal. 2005, 2009). The fi- nal composition, with reference to the optical constants, is Themidplanesettling approachshowsa differentbehavior, 11.73 % MgFeSiO4 (Dorschneretal. 1995), 32.6 % Mg2SiO4 (Henning&Stognienko1996),36.5%MgSiO (Dorschneretal. becausethedust-gascouplingiscalculatedinthemidplaneonly. 3 1995), 1.5 % NaAlSi O (Mutschkeetal. 1998), 15% C Particles do not decouplefrom the gas at a specific height, but 2 6 (Preibischetal. 1993). The shape of our particles is irregular, keep following a Gaussian distribution all the way throughthe andapproximatedusingadistributionofhollowspheres(DHS, disksurface.Thisgivesanalmostconstantdust-to-gasratiofor Minetal.2005).Weusedavacuumfractionof0.7,thoughthis thesmallestparticles(<1µm),andamuchweakerdepletionfor choicedoesnotinfluenceourresultsbecausewedonotfocuson theintermediatesizes. detailedfeatureshapes. Settling the dust also impacts the temperature structure of thedisk(Fig.3),andthereforeitsdensitystructure.Non-settled disk modelshave a more or less constanttemperaturedistribu- 2.3.2. Size tionbelowthedisksurface(Fig.3,dash-dottedline).Biggrains, however,areefficientcoolers,andsettlingthemleadstoacolder Observations of protoplanetary disks show evidence for midplane and warmer surface. The stratification in dust sizes (sub)micronandmillimeter-sizedorlargergrains.Intermediate also leads to a gradual increase in temperature from the mid- sizedgrainsarenotobserved,butarepredictedbydustcoagula- plane to the disk surface (see also Hasegawa&Pudritz 2010). tionmodels(e.g. Weidenschilling1984;Birnstieletal.2010a). Becausethetemperatureinandabovethemidplaneisnolonger We therefore used a grain size distribution ranging from sub- isothermal,itbecomesimportanttosolvefortheverticalstruc- microntomillimetersizesthatfollowsapowerlaw, f(a)=a q, − tureofthediskusingthelocalscaleheight,whichincreaseswith andusedadefaultindexofq=3.5similartotheMathis,Rumpl height.Usingonlythemidplanetemperaturetocalculatethever- and Nordsieck (MRN) distribution (Mathisetal. 1977). To al- ticalstructureofthediskunderestimatesthescaleheightwithin low settling of different grain size to a different height in the themidplanebyuptoafactoroftwo(Fig.3).Thisleadstoflat- disk,wedividedoursizedistributionintotwobinsperorderof terdiskswith-inturn-evenlowermidplanetemperatures(Fig. magnitude.Wedefinethegrainradiusforthesettlingcalculation 3,dottedline). withthelogarithmicmeanoftheminimumandmaximumgrain sizesto(i.e.a=1.78micronforgrainsizebinbetween1.00and 3.16micron).Theopacitiesofthese grainswere calculatedus- 2.3.Dustgrainproperties ing10sizesperbintoavoidstrongresonantfeaturesthatcould Dustgrainsinourmodelarecharacterizedbythreedifferentpa- resultfromusingasinglegrainsize. rameters:composition,sizeandshape.Differentgrainsizesset- tletodifferentheightsinthedisk(SeeFig.2),andtheiropacities 2.4.Diskparameters aredisplayedinfigure4. Because our disks are in vertical hydrostatic equilibrium, the onlyfreefittingparametertocontroltheverticalstructurefora 2.3.1. Compositionandshape given mass is the turbulent mixing strength α. The radial dis- Our dust grains consist mainly of amorphous silicates, mea- tribution of dust and gas is parametrized by a power-law as suredforthecompositionofinterstellardusttowardtheGalactic Σ(r) = r p with the commonly used p = 1 for a steady-state − center by Minetal. (2007), co-added with with a continuum accretiondisk. The inner radiusis placed at a dust evaporation opacity source, for which we used amorphous carbon. The ra- temperatureof1500K,whereastheouterradiusisfixedto300 tio of amorphous carbon / amorphous silicates influences the AU in accordance with D’Alessioetal. (2006). The total disk peakstrengthofthe10-micronsilicatefeature.Weusedamass mass is a fixed fraction of 1 percent of the stellar mass (e.g. 4 Mulders&Dominik:Probingturbulentmixingacrossthestellarmassrange Parameter Value Range p 1.0 0...2.0 M 0.01M 0.001...0.1 disk star dust-to-gas 0.01 0.01...1 T 1500 1000...2500 evap R [AU] 300 50...1000 out a [µm] 0.01 0.01...10 min a [µm] 1000 10...105 max q -3.5 -2.5...-4.5 α 0.01 10 6...1.0 turb − Table1.Parametersofourdiskmodel,andrangesexplored. Parameter BrownDwarf TTauri HerbigAe T [K] 3000 4000 8500 eff L [L ] 0.025 0.9 21 M∗ [M⊙ ] 0.08 0.5 2.0 R∗[AU⊙] 0.011 0.07 0.30 Fig.5. Observed median SED of T Tauri stars in Taurus (dia- in dMisdtuastn[cMe⊙[p]c] 816×5 10−6 514×0 10−5 2140× 10−4 mmoonddels)wwitihthaqtuurabrutilleenst(mgriaxyinagresatr)e.nOgvtehropfloαtte=d1is0o4uarnbdesatn-fiatcdcirsek- − Mτhaalcocr[M⊙/yr] 00 30 × 10−8 00.14 wtioitnhrαate=o1f032×(d1o0t−t8edMl⊙in/yer)(asnodlidwliitnheo)u.tAalcscoreptliootnte(ddaasreheadmliondee)l. − Table2.Stellar-dependentmodelparameters. The gray line denotes the stellar photosphere.The inset shows themillimeterregime. Scholzetal.2006;Williams&Cieza2011),assumingadust-to- diskbysettlingthedust.Aturbulentmixingstrengthofα=10 2 − gasratioof1:100. - a value commonly used for viscous accretion disks - over- predicts the mid-infraredfluxes longward of 20 micron, which arises from the region around 10 AU. We need to lower the 3. FitstomedianSEDs ∼ turbulentmixingstrengthtoachieveagoodfit,whichresultsin To compare our disk model to the three different data sets, we α=10−4. used median SEDs. Instead of fitting all individual sources or Becausethe20micronfluxmainlyprobestheheightofthe comparing them to a model grid, we only fitted our model to disksurface,therearealsootherwaystolowerit,see alsosec- onemedianSEDtoextract’typical’fitparameters.Furlanetal. tion4.5.Wecanreducethenumberofsmallgrains,whichwill (2005,2006) haveshownthatthisapproachworkswell, taking lowertheopticaldepthintheupperlayersanddecreasethevisi- intoaccounttheobservedspreadinmid-infraredcolors. bledisksurface.Decreasingthetotaldiskmasswouldbeincon- When fitting the data, we tried to keep asmanyparameters sistentwiththemillimeterflux,butwecanmodifythegrainsize fixedaspossible,seeTable1.Parametersthatcouldnotbefixed distribution because it is dominated by big grains. Decreasing because of the different stellar properties are given in Table 2. thepower-lawindexofthegrainsizedistributionremovessmall These are the inner radius, which we kept at 1500 Kelvin and grainsfromthedisksurface,butdoesnotsignificantlyaffectthe the dust mass, which is a fixed fraction of the stellar mass of massinbiggrainsnearthediskmidplane.Changingthepower- 10 4M . lawindexto3.25issufficienttofitthemedianSEDwithatur- − ∗ bulentmixingstrengthofα=10 2. − 3.1.TTauristars 3.2.Herbigstars The Taurus median SED has been fitted using a hydrostatic disk modelby D’Alessioetal. (2006), which demonstratedthe SpectralenergydistributionsforalargenumberofHerbigstars need for grain growth and dust settling. Our goal is to re- areavailable,butamedianSEDhasnotbeenconstructedbefore. produce these results, but now in the context of a more self- WeconstructedoneinappendixB,whichwepresentinfigure6. consistent settling approach to constrain the turbulent mixing Totesttheassumptionthatmoremassivestarshavelesssettled strength, and not an arbitrary height for the midplane layer disks, we retained as many disks parameters from the T Tauri of big grains. We have extended the existing data set from starsaspossible.We changed(seealsotable2)thediskmass- Furlanetal. (2006) with sub-millimeter fluxes at 850 µm us- whichscaleswiththestellarmassandisincreasedwithafactor5 ingthecatalogfromAndrews&Williams(2005).Thedatafrom withrespecttotheTTauristar,consistentwiththesubmillimeter D’Alessioetal. (1999) include some non-detectionsand upper data-andtheinnerradius-whichalsoincreasestobeconsistent limits(seeappendixA).Theupdatedmillimetermedianiswell withdustevaporation. fittedbyadustmassof5 10 5M ,consistentwiththeresult Although accretion does not play a role in the SEDs − fromAndrews&Williams×(2005). ⊙ of Herbig stars because of the increased stellar luminos- TofitthemedianSEDinthenear-infrared,weneededtoin- ity and larger inner radius, the near-infrared fluxes (2-8 mi- cludeviscousheating(Fig.5).Wedidnotself-consistentlysolve cron) of hydrostatic disk models underpredictthe observations the radialstructureof the disk, butcalculatedthe viscousheat- (Vinkovic´etal. 2006, see also Fig. 6). Different mechanisms ingwithamassaccretionrateof3 10 8 M /yr,thesameas have been proposed to explain the difference, from an in- − Furlanetal.(2006).Tofitthemid-in×fraredflux⊙,weflattenedthe creasedrimscaleheight(Verhoeffetal.2010;Ackeetal.2009) 5 Mulders&Dominik:Probingturbulentmixingacrossthestellarmassrange Fig.6. Observed median SED of Herbig stars (diamonds) with Fig.7. Observedmedian SED of browndwarfsin Chamaeleon quartiles(grayarea).Overplottedisourbest-fitdiskmodelwith I(diamonds),wherethe24micronandmillimeterpointshould a turbulent mixing strength of α = 10 4 and a dust shell with betreatedasupperlimits.Overplottedisourbest-fitdiskmodel − opticaldepthτ=0.14(solidline).Alsoplottedareamodelwith with a turbulentmixingstrengthof α = 10 4 (solid line). Also − α = 10 2 (dotted line) and without a dust shell (dashed line). plottedfor comparisonis a modelwith α = 10 2 (dottedline). − − The gray line denotes the stellar photosphere.The inset shows Thedashedlinedenotesthestellarphotosphere.Theinsetshows themillimeterregime. themillimeterregime. to halos (Vinkovic´etal. 2006; Verhoeffetal. 2011) to mate- Unlike the Herbig and T Tauri stars, hydrostatic disk mod- rial within the dust evaporation radius (e.g. Krausetal. 2008; els of brown dwarfs do not show a flux deficit in the near- Tannirkulametal. 2008a). Although an artificially increased infrared compared to the observed median. We scaled the disk scale height works well for the mid-infrared SED (Ackeetal. massandinnerradiustothebrowndwarfregime(seeTable2). 2009), it does not work well when fitting simultaneously the The stellar photosphere was fitted by a NextGen stellar atmo- near-infrared region of the Herbig median SED (see appendix sphere(Hauschildtetal. 1999),andwe adjustedtheluminosity C). Because an inner gaseous disk is beyond the current capa- downto 0.025L .We fitted themedianshortwardof8micron bilitiesofourcode,wemodeledthenear-infraredfluxdeficitof withoutanyaddi⊙tionaladjustments(seefigure7).Theassumed the hydrostaticmodelwith an optically thin sphericalhalo. We dust mass of 8 10 6 M is consistent with the upper limit − emphasize that this halo is a parametrization of optically thin fromKleinetal.×(2003), an⊙damountsto only2-3earthmasses emissionfromtheinnerregions,includingdustorgaswithinthe ofsolidmaterial. innerrim,andrefertheinterestedreadertotheappendix. Wefoundthataturbulentmixingstrengthofα=10 4iscon- − TheopticallythinhaloplaystheroleofaccretioninTTauri sistentwiththe24micronupperlimit,whereasamixingstrength stars: it provides near-infrared flux without affecting the flux ofα = 10 2 clearlyoverpredictsthisupperlimit.Wefoundthe − longward of 20 micron, in contrast to the puffed-up inner rim. sameturbulentmixingstrengthasfortheearlierspectraltypes. Weusedasmallhaloof0.3...1microngrainsbetween0.14and 0.3AU3thathasanopticaldepthof0.14inthevisualandadust massof4 10 12M (Figure6).Asaresultofthefittingproce- 4. Discussion − dure,we fo×undthe sa⊙me turbulentmixingstrengthforthe disk Although we found the same turbulent mixing strength for the of α = 10 4 as for the T Tauristars. A higher mixing strength − threedifferentsamples,thisdoesnotnecessarilymeanthatthese of α = 10 2 overpredictsthe Spitzer IRS fluxes from 20 to 40 − disksareequallyflat.Theverticalstructureisaproductofmore micronandtheIRASfluxat60micron. than just the turbulent mixing strength, most notably the local density, temperature and Keplerian frequency.In the following 3.3.Browndwarfs sectionwewilldescribethediskproperties,andshowthatdisks aroundlowermassstarsappearmoresettledataspecificradius, Disks around brown dwarfs are more difficult to detect owing consistent with Szu˝csetal. (2010), but that the structure in the totheirlowluminosity.Completesamplesdowntophotospheric mid-infraredemittingregionisremarkablyself-similar. valuesonlyexistupto8micron,andareincompleteat24micron Wewillalsodiscusswhyourchoiceofgrainsizedistribution (e.g. Ladaetal. 2006; Scholzetal. 2007; Luhmanetal. 2008). doesnotaffectourconclusionthattheturbulentmixingstrength Furthermore, very few millimeter detections exist (Kleinetal. doesnotvaryalongthestellarmassrangeinsection4.3andits 2003;Scholzetal.2006).WeusedthemedianSEDconstructed implicationfortheplanet-formingpotentialofthediskinsection by Szu˝csetal. (2010) for Chameleon I, where the median 24 4.4. The dependence of the fitted turbulent mixing strength on micronfluxshouldbetreatedasanupperlimit.Forconvenience, otherdiskparametersisdiscussedinsection4.5. wealsoplotthemillimeterupperlimitfromKleinetal.(2003), scaledtothedistanceoftheChameleonIstar-formingregion. 4.1.Diskpropertiesatfixedradius 3 Becausethehalospansaverynarrowtemperaturerange,itsnear- infraredspectrumisvirtuallyindistinguishablefromthatofapuffed-up To compare the dust and gas distribution in our best-fit mod- innerrim(seeFig.C.1). els, we display their pressure scale heightand the radialτ = 1 6 Mulders&Dominik:Probingturbulentmixingacrossthestellarmassrange Fig.8.Locationofthedustandgasinthediskofthebest-fitmodelofaTTauristar(center),Herbigstar(left)andabrowndwarf (right). Displayed in gray is the gas located within one (dark) and two (light) pressure scale heights. The solid lines marks the locationoftheradialτ=1surfaceinthevisual. surfaces in figure 8. The pressure scale heightis highestin the By scaling the radius to the intensity of the radiation field, we brown dwarf disk and lowest in the Herbig star, reflecting the canretrieveaself-similarsolutionfortheopticallythindusttem- differencesinstellarmass.Althoughtemperaturesarealsolower peratureprofile forlessmassivestars,thisisnotenoughtocompensatethelower 0.5 gravitationalpotentialinwhichthediskresides,andthegasre- T (r)=307K r /AU L /L − dust T mainsmoreflaring. ∗ ∗ ∗ ⊙ (5) The dust, on the other hand, follows a different path: the =315K∗(cid:16)(rT/AU)−0p.5 =Tˆdus(cid:17)t(rT), τ = 1surfaceintheouterdiskreachesarelativeheight(z/r)of wherethetemperatureat1AUfortheTTauristarisclosetothe 0.17,0.15and0.14fortheHerbigstar4,TTauristarandbrown selfconsistentsolutionbecauseitsluminosityiscloseto1L .As dwarf,respectively.Thisindicatesthatdisksaroundlessmassive can be seen in figure9b, these scaled solutionsagree to w⊙ithin starsarealittleflatter,thoughthedifferenceremainswithin20%. 20%fortheTTauristar,Herbigstarandbrowndwarf. Comparedtothemuchhigherpressurescaleheightatthesame radius,thediskoflowermassstarsthereforeappearsmoreset- 4.2.1. Self-similartemperatureandsurfacedensity tled,becausethedisksurfacereachesdowntoonepressurescale heightforthe Herbigstar, butto less than halfa pressurescale With the same procedure,we can also comparedifferentquan- heightinthebrowndwarf.Thiscanbeexplainedbylower(sur- titiestoseeiftheyarealsoself-similarinallthreesamples.We face)densitiesand temperatures(see figure10a, 11a andTable find that also the midplane temperatures for all three samples 3)thatmakethedustdecoupleclosertothemidplane,aswellas (seeFig.10b)canbedescribedwithaself-similarfunction: aloweropticaldepth. The shape of the disk surface can also be viewed in Tˆmid(rT)=90K (rT/AU)−0.44, (6) ∗ scattered-lightimages.Wedisplaytheradialprofilesofsynthetic which is a strong indication that this must be a consequence scattered-lightimagesat0.5µminfigure12a.Theradialprofiles ofaself-similarverticalstructureacrossthestellarmassrange, arescaledtothephotosphericfluxatthesamewavelength,such which will we explore below in more detail. Interestingly,this thatittracesonlytheshapeofthedisksurface,andnottheprop- scaling law also works for the surface density (Fig. 11), such ertiesofthecentralstar.Acleartrendisvisibleatallradii,with thatregionswithsimilartemperaturesalsohavesimilarsurface higher fluxes and shallower slopes for Herbig stars and lower densities: fluxes and steeper slopes for brown dwarfs (see also Table 3). Σˆ(r )=0.25g/cm2 (r /AU) 1, (7) T T − Thisindicatesthatthe disk surfaceat a specific locationis less ∗ flaring. This is because across the three samples, the luminosity scales roughlywithstellarmasssquared5.Sincethediskmassisafixed fractionofthestellarmass,thesurfacedensityscalesas 4.2.Self-similarsolutionsintheMIRemittingregion M L Because the mid-infraredemission probesa different region in Σˆ1AU = ⊙ Σ1AU = ⊙ Σ1AU, (8) M L all three samples, it is also interestingto compareregionswith ∗! r ∗ similartemperatures,whicharelocatedatdifferentradiifordif- However,theregioncorrespondingtothesametemperaturelies ferentstars.Theseregionscanbeidentifiedbyusingthatthedis- fartherawayfromthestar,compensatingforthechangeindisk tancer,atwhichaspecificfluxfromthestarisreceived,scales mass: withthesquarerootofthestellarluminosityL .Byscalingthe craodnisutsrutcottdhiemveanlsuieonolfestsheeqsuteivllaalrenfltusxo,frTou=r dri/sk∗√pLr∗o/pLe⊙r,tiwese(cdaen- Σˆ(rT)=Σˆ1AU rT−1 = √ΣL1A/UL √Lr/L −1 (9) ! ! notedbyaˆ),andcheckiftheyareself-similaracrossthestellar =Σ r 1 =Σ(r), ∗ ⊙ ∗ ⊙ 1AU − massrange. For example, the optically thin dust temperature for the T Thus the self-similar solutions for the surface density agree to Tauristarcanbedescribedas(seeFig.9a) within20%. T (r)=307K (r/AU) 0.5, (4) 5 Although the main-sequence mass luminosity relation for solar dust − ∗ mass stars follows L M3.5...4, the T Tauri stars in our sample are 4 Ithastobenotedthatthehaloincreasesthecalculatedτ=1surface pre-mainsequenceand∝donotfollowthisrelation,whereasthebrown fortheHerbigstar. dwarfsareinadifferentscalingregimealtogether. 7 Mulders&Dominik:Probingturbulentmixingacrossthestellarmassrange a) b) Fig.9.Radialtemperatureprofileoftheopticallythindustforthebest-fitmodelofaTTauristar(solidline),Herbigstars(dotted line)andabrowndwarf(dash-dottedline).Theleftpanelshowstherealtemperature,therightpanelshowstheself-similarsolutions. a) b) Fig.10.Radialtemperatureprofileinthemidplaneforthebest-fitmodelofaTTauristar(solidline),Herbigstars(dottedline)and abrowndwarf(dash-dottedline).Theleftpanelshowstherealtemperature,therightpanelshowstheself-similarsolutions. a) b) Fig.11. Radial surface density profile for the best-fit model of a T Tauri star (solid line), Herbig stars (dotted line) and a brown dwarf(dash-dottedline).Theleftpanelshowstherealsurfacedensity,therightpanelshowstheself-similarsolutions. a) b) Fig.12. Radial intensity profile in scattered light at 0.5 micron for the best-fit model of a T Tauri star (solid line), Herbig stars (dottedline)andabrowndwarf(dashedline).Theleftpanelshowstherealintensityasfractionofthestellarfluxatthatwavelength F (r)/F versusr),therightpanelshowstheself-similarsolutions(F (r)/F (L /L )versusr/√L /L scat scat ∗ ∗· ∗ ⊙ ∗ ⊙ 8 Mulders&Dominik:Probingturbulentmixingacrossthestellarmassrange 4.2.2. Self-similarscaleheight If we now look at a vertical slab in the disk located at r = T r/√L /L ,wefindthattwoofthemainparametersfortheset- tlingc∗alcu⊙lationinequations(1)and(2)-thegassurfacedensity (8)andtemperature(6)-areself-similar.Thethirdimportantpa- rameter,theKeplerianfrequency,isnotthesame,butscaleswith √L /L ∗ ⊙ Ωˆk(rT)= sGrMT3∗ = sG √LM/⊙L √Lr/L !−3 (10) ∗ ⊙ ∗ ⊙ GM = r r3⊙ L∗/L⊙ =Ωk(r) L∗/L⊙, p p whichisequivalenttor/r .Thegaspressurescaleheightatthis T locationisthereforenotself-similar,buttherelativescaleheight Hp/ris: Fig.13. Dust-to-gasratio at rT = 10 AU for the best-fit model ofaTTauristar(solidline),Herbigstar(dottedline)andbrown Hˆp(rT) = cˆs(rT) = cs(r) = cs(r) = Hp(r). dwarf(dashedline).Thegraylinedenotesa well-mixedmodel rT rTΩˆk(rT) rT(Ωk(r)r/rT) rΩk(r) r with a dust-to-gas ratio of 0.01. The surface temperature at (11) thislocationcorrespondstoroughly100K,andthereforeemits Thismeansthatifweexpresstheheightabovethemidplane(z) mainlyinthemid-infrared. in terms of the relative height(z/r), the local scale height, and thereforetheverticalstructureofthegas,isself-similar: Diskproperties Hˆ (r ,z /r )= H (r ,z /r ). (12) Parameter Brown TTauri Herbig Self- p T T T p T T T dwarf Ae/Be similar T [K] 36 86 185 90 1AU 4.2.3. Self-similardustsettling q 0.45 0.44† 0.43 0.44 Σ [gr/cm2] 0.04 0.24 0.95 0.25 1AU The vertical structure of the dust in the mid-infrared emitting I [mJy/AU2] 1.110 9 1.310 6 4.210 4 2.910 5 regionatrT = 10AUisshowninfigure13.Likethatofthegas, o100AU 3.1· − 2.9· − 2.6· − 2.9· − the verticalstructureof the dustalso appearsself-similar when Table 3. Disk propertiesfor our best-fit models. The midplane expressedintermsofitsrelativeheightz/r.Thisisbecausealso temperatureis fitted by T (r)=T r q. The intensity in scat- theStokesnumber(Eq.(1)) mp 1AU − teredlightbyI(r)=I r ooutwardsof70AU. Themidplane 100AU − † 3m Ωˆ (r ) temperatureinTTauristarsshowsaclearbreakat2AUcaused Sˆt(r ,z /r )= k T T T T 4σρˆ (r ,z /r )c (r ,z /r ) by viscous heating (fig 10a), and at smaller radii it is best de- gas T T T s T T T scribedasT(r)=125r 0.93. − 3m Ω (r)/√L /L (13) = k ∗ ⊙ 4σρ (r,z/r)/√L /L c (r,z/r) gas s ∗ ⊙ =St(r,z/r) is self-similar because the gas density scales with 1/Hp. The The self-similarity of verticalstructure is furtherillustrated sameistrueforthediffusioncoefficient(2) by synthetic scattered-light images that trace the shape of the dust disk surface (Fig. 12). If we plot the radial intensity pro- cˆ (r ,z /r )Hˆ (r ,z /r ) Dˆ(rT,zT/rT)=αturbcs(rT1,+zTS/ˆrt2T()rHT,p(zrTT/,rzTT)/rT) (14) ttfiihvleeetahhsereiagehfdut6inffc(eFtirsoecnant/toFsft∗at∗hrseLl∗sin/cLael⊙ue)dp,wrnaiedceisuleyse(rtFTh,iagtcutohrreere1rca2tdbeid)a,lfaopnrrdothfithelearstetflhoae-r s T T T p T T T =α shapeofthedisksurfaceisindeedself-similar. turb 1+St2(r ,z /r ) T T T Since the amount of radiation reprocessed at every radius = D(r,z/r) is set by the coveringfraction (z/r) - which is the same for all stars - even the SED in the mid-infrared becomes self-similar because it is only a productof self-similar quantitieswhen ex- (figure 14). The scaled model SEDs line up to within 20% in pressedinunitsofr andz /r .Consequently,theverticalstruc- T T T themid-infraredat20-30micronwherewefittedtheSEDs.The tureofbothgasanddustinthemid-infraredemittingregionsof similarityextendsintothefar-infrared(within40%)andeventhe protoplanetarydisksareself-similar. near-infraredupto3micron(withinafactorof2).Thelatteris ThisresultisconsistentwiththatofFurlanetal.(2011),who surprisingandprobablycoincidental,giventhe differentnature alsofounndnovariationinthedegreeofsettlingbetweenbrown oftheemissionmechanismatthatwavelength:viscousheating dwarfs and T Tauri stars, but partly contradicts Szu˝csetal. for the T Tauri star, optically thin emission for the Herbig star (2010).Theseauthorsalsofoundthesamerelativescale height andmostlyphotosphericfluxforthebrowndwarf. (H/r)forthedustinthemid-infraredemittingregion.However, the required reduction in dust scale height compared to their fully flared models implies a difference in gas scale heightbe- 6 The relative height z/r scales with r /r = 1/√L /L , while the T tweenbrowndwarfsandTTauristars,whichwedonotfind. intensityinscatteredlightscaleswith(r /r)2=1/(L /L∗ ).⊙ T ∗ ⊙ 9 Mulders&Dominik:Probingturbulentmixingacrossthestellarmassrange 4.4.Planet-formingpotential If the same disk properties are found at a different location in the disk aroundheavier stars, does this mean that the resulting planetarysystemsaresimplyscaledversionsofeachother? To comparethe later stagesof planetformation,we looked at the Hill sphere and feedingzone of a formingplanet, to see howmuchmassisavailableforitsformation,inawaysimilarto Raymondetal.(2007).TheHillsphereisgivenby m R (r)=r 3 P , (16) H 3M r ∗ wherem isthemassoftheplanet.Expressedinthesameunits P thatresultinself-similarsolutionsfortheverticalstructure(r = T r/√L /L )itbecomes ∗ ⊙ m R (r) Fig.14.Best-fitmodelSEDsfortheTaurusmedian(solidline), RˆH(rT)=r/ L /L 3 P = H , (17) Herbig median (dotted line) and brown dwarf median (dashed ∗ ⊙ 3M /√L /L √3L /L line),scaledtoaluminosityof1L andadistanceof140pc. p r ∗ ∗ ⊙ ∗ ⊙ ⊙ So the size of the Hill sphere is not self-similar, thoughits de- pendenceonluminosityisweak.Itdecreasesinsizeforlesslu- minous stars, despite the lower gravity of the central star. The 4.3.Grainsizedistributions totalmassavailableinthefeedingzonedeviatesmorebecauseit scaleswithanextrafactor2πr : Throughoutthisarticle,wehaveassumedthattherearenoradial T gradientsin the grainsize distribution.Modelsof graingrowth Mˆ (r )=2πr Σˆ(r ) 2Rˆ (r ) predictthatgrainsizesdecreasewithradius(e.g. Birnstieletal. feed T T T ∗ H T 2010b),whichhasalsobeenobservedbyGuilloteauetal.(2011) =2πΣ(r)r/ L /L 2 RH(r) (18) andBanzattietal. (2011).Additionally,disksaroundlatertype ∗ ⊙∗ √3L /L sMtaordsealriengcothldeegrraanindsleizsesmdiastsrsiibvuet,iolenadisinbgeytoonsdmtahlelesrcgorpaeinosfiztheiss. = L /L−5/6Mpfeed(r). ∗ ⊙ ∗ ⊙ paper, though a recipe for doing so is available (Birnstieletal. Thesizeofthefeedingzonethereforescalesalmostlinearlywith 2011).Fornow,wewillonlydiscussifweexpecttoseediffer- luminosity. This means that although the initial conditions for encesin the grainsize distributionin the mid-infraredemitting planetformationarethesameacrossthestellermassrange,this regionbetweenthethreedifferentsamples. isnottrueforthelaterstagesofplanetformation,inagreement Because the vertical structure in the mid-infrared region is withRaymondetal.(2007). self-similar, we investigated if this is also true for the grain- sizedistributionanditsplanet-formingpotential.Grainsinpro- toplanetary disks are in a coagulation-fragmentation equilib- 4.5.Dependenceondiskparameters rium (Weidenschilling 1984), driven by turbulence. According Themethodwepresenthereisusefulforconstrainingvariations toBirnstieletal.(2011),themostimportantparametersthatde- in the turbulentmixing strength,but it is more difficultto con- fine the size distribution are the turbulent mixing strength, the strain its absolute value. The mid-infrared flux with which we gas surface density, the temperature, and three parameters that fitted our models traces the height of the disk surface, which refertothemicrophysicsofdust:thefragmentationvelocityu , f canalsobeinfluencedbyotherfactorsthantheturbulentmixing thesoliddensityofdustρ andthesizedistributionoffragments s strength. However, because our solutions for the mid-infrared ξ.Weassumedthelastthreetobethesameacrossthethreesam- emitting region are self-similar, these uncertainties will affect ples. our estimate of the turbulent mixing strength in the same way We findnovariationsin theturbulentmixingstrength(sec- forallstars,anddonotinfluenceourconclusionthatitdoesnot tion3).Regionswithsimilartemperaturealsohaveasimilarsur- varyacrossthestellarmassrange. facedensity(section4.2).Thegrainsizedistributionshouldthen Inthissectionwewillexplorehowotherparameterscanaf- alsobeself-similar.Wecanseewhythisisthecasebylookingat fect our estimate of the turbulent mixing strenght. In particu- theexpressionforthemaximumgrainsizeforturbulence-driven lar, we will explore how to keep the turbulent mixing strength growth7-asgivenbyequation(12)ofBirnstieletal.(2009): fixed at α = 0.01 and fit the three median SEDs by vary- turb ingtheseotherparameters.Asalreadymentionedinsection3.1, aˆ (r )= Σˆ(rT)u2f = Σ(r)u2f =a (r), (15) smallchangesinthegrainsizedistributionalsoaffecttheheight max T πα ρ cˆ2(r ) πα ρ c2(r) max ofthedisksurface.Usingaflatterslopeforthisdistributionre- turb s s T turb s s moves small grains from the disk surface, and we can fit the which is also self-similar when looking at regionswith similar medianSEDs with a power-lawindexof 3.25.Anotherparam- temperature (r = r/√L /L ). This means that also the grain eter that directly influences the SED in the mid infrared is the T size distribution in the m∗id-i⊙nfrared emitting region is not ex- gas-to-dustratio.Alowerratioleadstoaweakercouplingofthe pectedtovaryacrossthestellarmassrange. dustandhencetoflatterdisks.Wefittedagas-to-dustratioof1 forα =0.01. turb 7 which istherelevant regimeforparticlesizessmallerthanamil- One parameterthat we cannotchangeis the dustmass, be- limeter causethiswouldbeinconsistentwiththemillimeterphotometry. 10