EPJWebofConferenceswillbesetbythepublisher DOI:willbesetbythepublisher (cid:13)c Ownedbytheauthors,publishedbyEDPSciences,2016 6 1 0 Probing the transversity spin structure of a nucleon in neutrino- 2 production of a charmed meson b e F 2 B.Pire1,a,L.Szymanowski2,b,andJ.Wagner2,c 1Centre de physique théorique, École Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau, ] h France p 2NationalCentreforNuclearResearch(NCBJ),Warsaw,Poland - p e h Abstract.IncludingO(m )termsinthecoefficientfunctionsand/orO(m )twist3contri- c D [ butionsintheheavymesondistributionamplitudesleadstoanon-zerotransverseampli- 2 tudeforexclusiveneutrinoproductionofaDpseudoscalarcharmedmesononanunpolar- v izedtarget. WeworkintheframeworkofthecollinearQCDapproachwherechiral-odd 6 transversitygeneralizedpartondistributions(GPDs)factorizefromperturbativelycalcu- 6 lablecoefficientfunctions. 6 7 0 . 1 0 1 Introduction 6 1 : v The now well established framework of collinear QCD factorization [1–3] for exclusive reactions i mediatedbyahighlyvirtualphotoninthegeneralizedBjorkenregimedescribeshadronicamplitudes X using generalized parton distributions (GPDs) which give access to a 3-dimensional analysis [4] of r a theinternalstructureofhadrons. Neutrinoproductionisanotherwaytoaccess(generalized)parton distributions [5]. Although neutrino induced cross sections are orders of magnitudes smaller than thoseforelectroproductionandneutrinobeamsaremuchmoredifficulttohandlethanchargedlepton beams, they havebeen veryimportant toscrutinizethe flavorcontent ofthe nucleonand theadvent ofnewgenerationsofneutrinoexperimentsopensnewpossibilities. Inparticular,theflavorchanging character of the electroweak current allows charmed quark to be produced in processes involving light quark partonic distributions [6]. This in turn allows helicity flip hard amplitudes to occur at the O(mc) level where Q is the typical large scale allowing QCD collinear factorization. Such a Q coefficient function has to be attached to a chiral-odd generalized parton distribution, the elusive transversity GPDs [7–9]. The transverse character of these GPDs select the transverse polarization oftheW−boson,whichphenomenologicallyallowsaseparationofthisinterestingamplitudethrough theazimuthaldistributionofthefinalstateparticles[6]. ae-mail:[email protected] be-mail:[email protected] ce-mail:[email protected] EPJWebofConferences 2 Kinematics Fordefiniteness,weconsidertheexclusiveproductionofapseudoscalarD−mesonthroughthereac- tion(seeFig. 1): ν(k)N(p ) → l−(k(cid:48))D+(p )N(p ), (1) l 1 D 2 where N is a proton or a neutron, in the kinematical domain where collinear factorization leads to a description of the scattering amplitude in terms of nucleon GPDs and the D−meson distribution amplitude,withthehardsubprocesses: W+(ε,q)d → D+(p )d. (2) D Ourkinematicalnotationsareasfollows(mand M arethenucleonand D−mesonmasses, m will D c denotethecharmedquarkmass): q=k−k(cid:48) ; Q2 =−q2 ; ∆= p −p ; ∆2 =t; 2 1 1m2−∆2/4 ∆µ 1m2−∆2/4 ∆µ pµ =(1+ξ)pµ+ T nµ− T ; pµ =(1−ξ)pµ+ T nµ+ T ; (3) 1 2 1+ξ 2 2 2 1−ξ 2 Q2 M2 −∆2 qµ =−2ξ(cid:48)pµ+ nµ ; pµ =2(ξ−ξ(cid:48))pµ+ D Tnµ−∆µ , 4ξ(cid:48) D 4(ξ−ξ(cid:48)) T with p2 = n2 = 0 and p.n = 1. As in the double deeply virtual Compton scattering case [10], it is meaningfultointroducetwodistinctmomentumfractions: (p −p ).n q.n ξ =− 2 1 , ξ(cid:48) =− . (4) 2 2 Neglectingthenucleonmassand∆ ,theapproximatevaluesofξandξ(cid:48)are T Q2+M2 Q2 ξ ≈ D , ξ(cid:48) ≈ . (5) 4p .q−Q2−M2 4p .q−Q2−M2 1 D 1 D Tounifythedescriptionofthescalingamplitude,wedefineamodifiedBjorkenvariable xD ≡ Q2+MD2 whichallowstoexpressξandξ(cid:48)inacompactform: B 2p1.q xD x ξ ≈ B , ξ(cid:48) ≈ B . (6) 2−xD 2−xD B B Ifthemesonmassistherelevantlargescale(forinstanceinthelimitingcasewhereQ2vanishesasin thetimelikeComptonscatteringkinematics[11]): τ M2 Q2 →0 ; ξ(cid:48) →0; ξ ≈ ; τ= D . (7) 2−τ s −m2 WN 3 The transverse amplitude IntheFeynmangauge,thenon-vanishingm −dependentpartoftheDiractraceinthehardscattering c partdepictedinFig. 1areads: m −g 2(Q2+M2) m 1 Tr[σpiγνpˆ γ5γν(cid:48) cεˆ(1−γ5) νν(cid:48)]= D ε [(cid:15)µpin+igµi] c , (8) D D D ξ µ ⊥ D D 1 2 1 2 PhysicsOpportunitiesatanElectron-IonCollider Figure1.Feynmandiagramsforthefactorizedamplitudefortheν N →µ−D+N(cid:48)ortheν N →µ−D0N(cid:48)process µ µ involvingthequarkGPDs;thethicklinerepresentstheheavyquark.IntheFeynmangauge,diagram(a)involves convolutionwithboththetransversityGPDsandthechiralevenones,whereasdiagram(b)involvesonlychiral evenGPDs. where ε is the polarization vector of the W±boson (we denote pˆ = p γµ for any vector p). The µ fermionictracevanishesforthediagramshownonFig. 1bthankstotheidentityγρσαβγ = 0. The ρ denominatorsofthepropagatorsread: Q2 Q2+M2 D =k2−m2+i(cid:15) = (x+ξ−2ξ(cid:48))−m2+i(cid:15) = D(x+ξ)−Q2−m2+i(cid:15), (9) 1 c c 2ξ(cid:48) c 2ξ c Q2+m2 D =k2+i(cid:15) =z¯[z¯m2 + D(x−ξ)+i(cid:15)], 2 g D 2ξ where k (k ) is the heavy quark (gluon) momentum. The transverse amplitude is then written as c g (τ=1−i2): TT = iC√ξ2((mQc2−+2MMD2D))N¯(p2)HTφiσnτ+H˜Tφm∆2Nτ +EφTnˆ∆τ2+mN2ξγτ −E˜φTmγτNN(p1), (10) withC = 2πC α V ,intermsoftransverseformfactorsthatwedefineas: 3 F s dc (cid:90) φ(z)dz(cid:90) Fd(x,ξ,t)dx Fφ = f T , (11) T D z¯ (x−ξ+βξ+i(cid:15))(x−ξ+αz¯+i(cid:15)) where Fd is any d-quark transversity GPD, α = 2ξMD2 , β = 2(MD2−m2c) and we shall denote E¯φ = T Q2+M2 Q2+M2 T D D ξEφ −E˜φ . Inthefollowing,weshallputβto0. T T TheprefactorinEq.(10)showsthetwosourcesofthetransverseamplitude:m signalsthecontri- c butionfromthehelicitychangingpartoftheheavyquarkpropagator,while M signalsthecontribu- D tionfromthetwist3heavymesondistributionamplitudewhichweparametrize(omittingtheWilson EPJWebofConferences lines)as: f (cid:90) 1 (cid:104)0|c¯(y)γ5d(−y)|D−(PD)(cid:105)=−i 4DMD dzei(2z−1)PD.yφ(Ds)(z), (12) 0 andforsimplicityweidentifyφswiththeleadingtwist2pseudoscalarcharmedmesonDAφ defined D as: f (cid:90) 1 (cid:104)0|c¯(y)γµγ5d(−y)|D−(PD)(cid:105)=−i 4DPµD dzei(2z−1)PD.yφD(z). 0 4 The azimuthal dependence of neutrinoproduction. Thedependenceofaleptoproductioncrosssectiononazimuthalanglesisawidelyusedwaytoana- lyzethescatteringmechanism.Thisprocedureishelpfulassoonasonecandefineanangleϕbetween aleptonicandahadronicplane,asfordeeplyvirtualComptonscattering[12]andrelatedprocesses. Intheneutrinocase,itreads: d4σ(νN →l−N(cid:48)D) = (13) dx dQ2dtdϕ B √ (cid:110) 1+ 1−ε2 √ √ √ (cid:111) Γ˜ σ + εσ + ε( 1+ε+ 1−ε)(cosϕReσ +sinϕImσ ) , −− 00 −0 −0 2 with G2 1 1 1 Q2 Γ˜ = F (cid:113) , (2π)416xB 1+4x2m2/Q2(s−m2N)21−(cid:15) B N andthe“cross-sections”σ = (cid:15)∗µW (cid:15)ν areproductofamplitudesfortheprocessW((cid:15))N → DN(cid:48), lm l µν m l averaged (summed) over the initial (final) hadron polarizations. In the anti-neutrino case, one gets √ √ √ a√similar ex√pression√with σ−− → σ++ , σ−0 → σ+0, 1+ 1−ε2 → 1− 1−ε2 and 1+ε+ 1−ε→ 1+ε− 1−ε.Weusethestandardnotationsofdeepexclusiveleptoproduction,namely y= p .q/p .kand(cid:15) (cid:39)2(1−y)/[1+(1−y)2]. Theazimuthalangleϕisdefinedintheinitialnucleon 1 1 restframeas: (cid:126)q·[((cid:126)q×(cid:126)p )×((cid:126)q×(cid:126)k)] sinϕ= D , (14) |(cid:126)q||(cid:126)q×(cid:126)p ||(cid:126)q×(cid:126)k| D whilethefinalnucleonmomentumliesinthexzplane(∆y =0). Thequantityσ isdirectlyrelatedtotheobservables<cosϕ>and< sinϕ>through −0 (cid:82) √ √ √ cosϕdϕd4σ ε( 1+ε+ 1−ε)Reσ <cosϕ> = (cid:82) = √ −0 , dϕd4σ 2(cid:15)σ +(1+ 1−ε2)σ 00 −− (cid:82) √ √ √ sinϕdϕd4σ ε( 1+ε+ 1−ε)Imσ < sinϕ> = (cid:82) = √ −0 . (15) dϕd4σ 2(cid:15)σ +(1+ 1−ε2)σ 00 −− Estimatingthecountingratesandtheangularobservablesdefinedaboveisinprogress[13]. Asa firststep,wecalculateσ whichisbilinearintransversityquarkGPDs. Atzerothorderin∆ ,σ −− T −− reads: 4ξ2C2(m +2M )2(cid:26) ξ2 (cid:27) σ = c D (1−ξ2)|Hφ|2+ |E¯φ|2−2ξRe[HφE¯φ∗] . (16) −− (Q2+M2)2 T 1−ξ2 T T T D PhysicsOpportunitiesatanElectron-IonCollider 10(cid:45)4 s = 20 GeV2 10(cid:45)5 y = 0.7 (cid:68) 4V e G b (cid:144)10(cid:45)6 p (cid:64) dt 2 Σ Q 10(cid:45)7 d d B x d 10(cid:45)8 10(cid:45)9 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Q2 GeV2 (cid:64) (cid:68) Figure2. Contributionofσ tothedifferentialcrosssection dσ ofneutrino-productionofaD+mesonon −− dxBdQ2dt aproton(dashedline)oraneutron(solidline)ats=20GeV2,y=0.7andt=t ,asafunctionofQ2. 0 Using the model of Ref [14] for the D+ meson distribution amplitude and the parametrization of the dominant transversity GPD H (x,ξ,t) from Ref [15] (and neglecting for the time being other T chiral-oddGPDscontributions),wecomputethecontributiontothedifferentialcrosssectiongivenin Eq.(13)integratedoverϕ. TheresultisshowninFig. 2asafunctionofQ2 for s=20GeV2,y=0.7 andt = t . Sincetheprocessselectsthed−quarkcontribution,theprotonandneutrontargetcases min allowtoaccess Hd and Hu respectively. Althoughsmall,thecross-sectionsareofthesameorderof T T magnitudeasthosefortheneutrinoproductionofπor D mesonsestimatedin[5]. Thisshowsthat s theseprocessesshouldbemeasurableinintenseneutrinobeamfacilities. Let us remind the reader that we allow Q2 to be quite small since the hard scale governing our processisM2 +Q2. D 5 Conclusion. Collinear QCD factorization has allowed us to calculate neutrino production of D−mesons in terms ofGPDs. Gluonandbothchiral-oddandchiral-evenquarkGPDscontributetotheamplitudefordif- ferentpolarizationstatesoftheW± boson. Theazimuthaldependenceofthecrosssectionallowsto separatedifferentcontributions. Plannedhighenergyneutrinofacilities[16]whichhavetheirscien- tificprogramorientedtowardtheunderstandingofneutrinooscillationsorelusiveinertneutrinosmay thusallow-withoutmuchadditionalequipment-someimportantprogressintherealmofhadronic physics. ThisworkwaspartiallysupportedbytheCOPIN-IN2P3AgreementandbythefrenchgrantANR PARTONS(GrantNo. ANR-12-MONU-0008-01);L.SzwaspartiallysupportedbygrantofNational ScienceCenter,Poland,No. 2015/17/B/ST2/01838. References [1] D.Mülleretal.,Fortsch.Phys.42,101(1994). EPJWebofConferences [2] X.Ji,Phys.Rev.D55,7114(1997);A.V.Radyushkin,Phys.Rev.D56,5524(1997). [3] J.C.Collins,L.Frankfurt,M.Strikman,Phys.Rev.D56,2982(1997). [4] M.Burkardt,Phys.Rev.D62,071503(2000)[Phys.Rev.D66,119903(2002)];J.P.Ralstonand B.Pire,Phys.Rev.D66,111501(2002);M.DiehlandP.Hagler,Eur.Phys.J.C44,87(2005). [5] B. Lehmann-Dronke and A. Schafer, Phys. Lett. B 521 (2001) 55; C. Coriano and M. Guzzi, Phys. Rev. D 71 (2005) 053002; P. Amore, C. Coriano and M. Guzzi, JHEP 0502 (2005) 038; A. Psaker, W. Melnitchouk and A. V. Radyushkin, Phys. Rev. D 75 (2007) 054001; B. Z. Kope- liovich, I. Schmidt and M. Siddikov, Phys. Rev. D 86, 113018 (2012) and D 89, 053001 (2014); G.R.Goldstein,O.G.Hernandez,S.LiutiandT.McAskill,AIPConf.Proc.1222(2010)248. [6] B.PireandL.Szymanowski,Phys.Rev.Lett.115,092001(2015);B.PireandL.Szymanowski, arXiv:1510.01869. [7] M.Diehl,Eur.Phys.J.C19,485(2001). [8] M. Diehl et. al. Phys. Rev. D 59, 034023 (1999); J. C. Collins et. al., Phys. Rev. D 61, 114015 (2000). [9] D.Yu.Ivanovetal.,Phys.Lett.B550,65(2002);R.Enberg,B.PireandL.Szymanowski,Eur. Phys.J.C47,87(2006). [10] M. Guidal and M. Vanderhaeghen, Phys. Rev. Lett. 90, 012001 (2003); A. V. Belitsky and D.Mueller,Phys.Rev.Lett.90,022001(2003). [11] E.R.Berger,M.DiehlandB.Pire,Eur.Phys.J.C23(2002)675. [12] M.Diehletal.,Phys.Lett.B411(1997)193;A.V.Belitsky,D.MuellerandA.Kirchner,Nucl. Phys.B629,323(2002). [13] B.Pire,L.SzymanowskiandJ.Wagner,workinprogress. [14] T.Kurimoto, H.n.LiandA.I.Sanda, Phys.Rev.D65, 014007(2002); T.Kurimoto, H.n.Li andA.I.Sanda,Phys.Rev.D67,054028(2003). [15] M.ElBeiyadet.al.,Phys.Lett.B688,154(2010). [16] D.S.Ayresetal.[NOvACollaboration],hep-ex/0503053;J.Mousseauetal.[MINERvACol- laboration],arXiv:1601.06313[hep-ex];seealsoM.L.Mangano,S.I.Alekhin,M.Anselminoet al.,CERNYellowReportCERN-2004-002,pp.185-257[hep-ph/0105155].