ebook img

Probing the transversity spin structure of a nucleon in neutrino-production of a charmed meson PDF

0.25 MB·
by  B. Pire
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Probing the transversity spin structure of a nucleon in neutrino-production of a charmed meson

EPJWebofConferenceswillbesetbythepublisher DOI:willbesetbythepublisher (cid:13)c Ownedbytheauthors,publishedbyEDPSciences,2016 6 1 0 Probing the transversity spin structure of a nucleon in neutrino- 2 production of a charmed meson b e F 2 B.Pire1,a,L.Szymanowski2,b,andJ.Wagner2,c 1Centre de physique théorique, École Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau, ] h France p 2NationalCentreforNuclearResearch(NCBJ),Warsaw,Poland - p e h Abstract.IncludingO(m )termsinthecoefficientfunctionsand/orO(m )twist3contri- c D [ butionsintheheavymesondistributionamplitudesleadstoanon-zerotransverseampli- 2 tudeforexclusiveneutrinoproductionofaDpseudoscalarcharmedmesononanunpolar- v izedtarget. WeworkintheframeworkofthecollinearQCDapproachwherechiral-odd 6 transversitygeneralizedpartondistributions(GPDs)factorizefromperturbativelycalcu- 6 lablecoefficientfunctions. 6 7 0 . 1 0 1 Introduction 6 1 : v The now well established framework of collinear QCD factorization [1–3] for exclusive reactions i mediatedbyahighlyvirtualphotoninthegeneralizedBjorkenregimedescribeshadronicamplitudes X using generalized parton distributions (GPDs) which give access to a 3-dimensional analysis [4] of r a theinternalstructureofhadrons. Neutrinoproductionisanotherwaytoaccess(generalized)parton distributions [5]. Although neutrino induced cross sections are orders of magnitudes smaller than thoseforelectroproductionandneutrinobeamsaremuchmoredifficulttohandlethanchargedlepton beams, they havebeen veryimportant toscrutinizethe flavorcontent ofthe nucleonand theadvent ofnewgenerationsofneutrinoexperimentsopensnewpossibilities. Inparticular,theflavorchanging character of the electroweak current allows charmed quark to be produced in processes involving light quark partonic distributions [6]. This in turn allows helicity flip hard amplitudes to occur at the O(mc) level where Q is the typical large scale allowing QCD collinear factorization. Such a Q coefficient function has to be attached to a chiral-odd generalized parton distribution, the elusive transversity GPDs [7–9]. The transverse character of these GPDs select the transverse polarization oftheW−boson,whichphenomenologicallyallowsaseparationofthisinterestingamplitudethrough theazimuthaldistributionofthefinalstateparticles[6]. ae-mail:[email protected] be-mail:[email protected] ce-mail:[email protected] EPJWebofConferences 2 Kinematics Fordefiniteness,weconsidertheexclusiveproductionofapseudoscalarD−mesonthroughthereac- tion(seeFig. 1): ν(k)N(p ) → l−(k(cid:48))D+(p )N(p ), (1) l 1 D 2 where N is a proton or a neutron, in the kinematical domain where collinear factorization leads to a description of the scattering amplitude in terms of nucleon GPDs and the D−meson distribution amplitude,withthehardsubprocesses: W+(ε,q)d → D+(p )d. (2) D Ourkinematicalnotationsareasfollows(mand M arethenucleonand D−mesonmasses, m will D c denotethecharmedquarkmass): q=k−k(cid:48) ; Q2 =−q2 ; ∆= p −p ; ∆2 =t; 2 1 1m2−∆2/4 ∆µ 1m2−∆2/4 ∆µ pµ =(1+ξ)pµ+ T nµ− T ; pµ =(1−ξ)pµ+ T nµ+ T ; (3) 1 2 1+ξ 2 2 2 1−ξ 2 Q2 M2 −∆2 qµ =−2ξ(cid:48)pµ+ nµ ; pµ =2(ξ−ξ(cid:48))pµ+ D Tnµ−∆µ , 4ξ(cid:48) D 4(ξ−ξ(cid:48)) T with p2 = n2 = 0 and p.n = 1. As in the double deeply virtual Compton scattering case [10], it is meaningfultointroducetwodistinctmomentumfractions: (p −p ).n q.n ξ =− 2 1 , ξ(cid:48) =− . (4) 2 2 Neglectingthenucleonmassand∆ ,theapproximatevaluesofξandξ(cid:48)are T Q2+M2 Q2 ξ ≈ D , ξ(cid:48) ≈ . (5) 4p .q−Q2−M2 4p .q−Q2−M2 1 D 1 D Tounifythedescriptionofthescalingamplitude,wedefineamodifiedBjorkenvariable xD ≡ Q2+MD2 whichallowstoexpressξandξ(cid:48)inacompactform: B 2p1.q xD x ξ ≈ B , ξ(cid:48) ≈ B . (6) 2−xD 2−xD B B Ifthemesonmassistherelevantlargescale(forinstanceinthelimitingcasewhereQ2vanishesasin thetimelikeComptonscatteringkinematics[11]): τ M2 Q2 →0 ; ξ(cid:48) →0; ξ ≈ ; τ= D . (7) 2−τ s −m2 WN 3 The transverse amplitude IntheFeynmangauge,thenon-vanishingm −dependentpartoftheDiractraceinthehardscattering c partdepictedinFig. 1areads: m −g 2(Q2+M2) m 1 Tr[σpiγνpˆ γ5γν(cid:48) cεˆ(1−γ5) νν(cid:48)]= D ε [(cid:15)µpin+igµi] c , (8) D D D ξ µ ⊥ D D 1 2 1 2 PhysicsOpportunitiesatanElectron-IonCollider Figure1.Feynmandiagramsforthefactorizedamplitudefortheν N →µ−D+N(cid:48)ortheν N →µ−D0N(cid:48)process µ µ involvingthequarkGPDs;thethicklinerepresentstheheavyquark.IntheFeynmangauge,diagram(a)involves convolutionwithboththetransversityGPDsandthechiralevenones,whereasdiagram(b)involvesonlychiral evenGPDs. where ε is the polarization vector of the W±boson (we denote pˆ = p γµ for any vector p). The µ fermionictracevanishesforthediagramshownonFig. 1bthankstotheidentityγρσαβγ = 0. The ρ denominatorsofthepropagatorsread: Q2 Q2+M2 D =k2−m2+i(cid:15) = (x+ξ−2ξ(cid:48))−m2+i(cid:15) = D(x+ξ)−Q2−m2+i(cid:15), (9) 1 c c 2ξ(cid:48) c 2ξ c Q2+m2 D =k2+i(cid:15) =z¯[z¯m2 + D(x−ξ)+i(cid:15)], 2 g D 2ξ where k (k ) is the heavy quark (gluon) momentum. The transverse amplitude is then written as c g (τ=1−i2):   TT = iC√ξ2((mQc2−+2MMD2D))N¯(p2)HTφiσnτ+H˜Tφm∆2Nτ +EφTnˆ∆τ2+mN2ξγτ −E˜φTmγτNN(p1), (10) withC = 2πC α V ,intermsoftransverseformfactorsthatwedefineas: 3 F s dc (cid:90) φ(z)dz(cid:90) Fd(x,ξ,t)dx Fφ = f T , (11) T D z¯ (x−ξ+βξ+i(cid:15))(x−ξ+αz¯+i(cid:15)) where Fd is any d-quark transversity GPD, α = 2ξMD2 , β = 2(MD2−m2c) and we shall denote E¯φ = T Q2+M2 Q2+M2 T D D ξEφ −E˜φ . Inthefollowing,weshallputβto0. T T TheprefactorinEq.(10)showsthetwosourcesofthetransverseamplitude:m signalsthecontri- c butionfromthehelicitychangingpartoftheheavyquarkpropagator,while M signalsthecontribu- D tionfromthetwist3heavymesondistributionamplitudewhichweparametrize(omittingtheWilson EPJWebofConferences lines)as: f (cid:90) 1 (cid:104)0|c¯(y)γ5d(−y)|D−(PD)(cid:105)=−i 4DMD dzei(2z−1)PD.yφ(Ds)(z), (12) 0 andforsimplicityweidentifyφswiththeleadingtwist2pseudoscalarcharmedmesonDAφ defined D as: f (cid:90) 1 (cid:104)0|c¯(y)γµγ5d(−y)|D−(PD)(cid:105)=−i 4DPµD dzei(2z−1)PD.yφD(z). 0 4 The azimuthal dependence of neutrinoproduction. Thedependenceofaleptoproductioncrosssectiononazimuthalanglesisawidelyusedwaytoana- lyzethescatteringmechanism.Thisprocedureishelpfulassoonasonecandefineanangleϕbetween aleptonicandahadronicplane,asfordeeplyvirtualComptonscattering[12]andrelatedprocesses. Intheneutrinocase,itreads: d4σ(νN →l−N(cid:48)D) = (13) dx dQ2dtdϕ B √ (cid:110) 1+ 1−ε2 √ √ √ (cid:111) Γ˜ σ + εσ + ε( 1+ε+ 1−ε)(cosϕReσ +sinϕImσ ) , −− 00 −0 −0 2 with G2 1 1 1 Q2 Γ˜ = F (cid:113) , (2π)416xB 1+4x2m2/Q2(s−m2N)21−(cid:15) B N andthe“cross-sections”σ = (cid:15)∗µW (cid:15)ν areproductofamplitudesfortheprocessW((cid:15))N → DN(cid:48), lm l µν m l averaged (summed) over the initial (final) hadron polarizations. In the anti-neutrino case, one gets √ √ √ a√similar ex√pression√with σ−− → σ++ , σ−0 → σ+0, 1+ 1−ε2 → 1− 1−ε2 and 1+ε+ 1−ε→ 1+ε− 1−ε.Weusethestandardnotationsofdeepexclusiveleptoproduction,namely y= p .q/p .kand(cid:15) (cid:39)2(1−y)/[1+(1−y)2]. Theazimuthalangleϕisdefinedintheinitialnucleon 1 1 restframeas: (cid:126)q·[((cid:126)q×(cid:126)p )×((cid:126)q×(cid:126)k)] sinϕ= D , (14) |(cid:126)q||(cid:126)q×(cid:126)p ||(cid:126)q×(cid:126)k| D whilethefinalnucleonmomentumliesinthexzplane(∆y =0). Thequantityσ isdirectlyrelatedtotheobservables<cosϕ>and< sinϕ>through −0 (cid:82) √ √ √ cosϕdϕd4σ ε( 1+ε+ 1−ε)Reσ <cosϕ> = (cid:82) = √ −0 , dϕd4σ 2(cid:15)σ +(1+ 1−ε2)σ 00 −− (cid:82) √ √ √ sinϕdϕd4σ ε( 1+ε+ 1−ε)Imσ < sinϕ> = (cid:82) = √ −0 . (15) dϕd4σ 2(cid:15)σ +(1+ 1−ε2)σ 00 −− Estimatingthecountingratesandtheangularobservablesdefinedaboveisinprogress[13]. Asa firststep,wecalculateσ whichisbilinearintransversityquarkGPDs. Atzerothorderin∆ ,σ −− T −− reads: 4ξ2C2(m +2M )2(cid:26) ξ2 (cid:27) σ = c D (1−ξ2)|Hφ|2+ |E¯φ|2−2ξRe[HφE¯φ∗] . (16) −− (Q2+M2)2 T 1−ξ2 T T T D PhysicsOpportunitiesatanElectron-IonCollider 10(cid:45)4 s = 20 GeV2 10(cid:45)5 y = 0.7 (cid:68) 4V e G b (cid:144)10(cid:45)6 p (cid:64) dt 2 Σ Q 10(cid:45)7 d d B x d 10(cid:45)8 10(cid:45)9 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Q2 GeV2 (cid:64) (cid:68) Figure2. Contributionofσ tothedifferentialcrosssection dσ ofneutrino-productionofaD+mesonon −− dxBdQ2dt aproton(dashedline)oraneutron(solidline)ats=20GeV2,y=0.7andt=t ,asafunctionofQ2. 0 Using the model of Ref [14] for the D+ meson distribution amplitude and the parametrization of the dominant transversity GPD H (x,ξ,t) from Ref [15] (and neglecting for the time being other T chiral-oddGPDscontributions),wecomputethecontributiontothedifferentialcrosssectiongivenin Eq.(13)integratedoverϕ. TheresultisshowninFig. 2asafunctionofQ2 for s=20GeV2,y=0.7 andt = t . Sincetheprocessselectsthed−quarkcontribution,theprotonandneutrontargetcases min allowtoaccess Hd and Hu respectively. Althoughsmall,thecross-sectionsareofthesameorderof T T magnitudeasthosefortheneutrinoproductionofπor D mesonsestimatedin[5]. Thisshowsthat s theseprocessesshouldbemeasurableinintenseneutrinobeamfacilities. Let us remind the reader that we allow Q2 to be quite small since the hard scale governing our processisM2 +Q2. D 5 Conclusion. Collinear QCD factorization has allowed us to calculate neutrino production of D−mesons in terms ofGPDs. Gluonandbothchiral-oddandchiral-evenquarkGPDscontributetotheamplitudefordif- ferentpolarizationstatesoftheW± boson. Theazimuthaldependenceofthecrosssectionallowsto separatedifferentcontributions. Plannedhighenergyneutrinofacilities[16]whichhavetheirscien- tificprogramorientedtowardtheunderstandingofneutrinooscillationsorelusiveinertneutrinosmay thusallow-withoutmuchadditionalequipment-someimportantprogressintherealmofhadronic physics. ThisworkwaspartiallysupportedbytheCOPIN-IN2P3AgreementandbythefrenchgrantANR PARTONS(GrantNo. ANR-12-MONU-0008-01);L.SzwaspartiallysupportedbygrantofNational ScienceCenter,Poland,No. 2015/17/B/ST2/01838. References [1] D.Mülleretal.,Fortsch.Phys.42,101(1994). EPJWebofConferences [2] X.Ji,Phys.Rev.D55,7114(1997);A.V.Radyushkin,Phys.Rev.D56,5524(1997). [3] J.C.Collins,L.Frankfurt,M.Strikman,Phys.Rev.D56,2982(1997). [4] M.Burkardt,Phys.Rev.D62,071503(2000)[Phys.Rev.D66,119903(2002)];J.P.Ralstonand B.Pire,Phys.Rev.D66,111501(2002);M.DiehlandP.Hagler,Eur.Phys.J.C44,87(2005). [5] B. Lehmann-Dronke and A. Schafer, Phys. Lett. B 521 (2001) 55; C. Coriano and M. Guzzi, Phys. Rev. D 71 (2005) 053002; P. Amore, C. Coriano and M. Guzzi, JHEP 0502 (2005) 038; A. Psaker, W. Melnitchouk and A. V. Radyushkin, Phys. Rev. D 75 (2007) 054001; B. Z. Kope- liovich, I. Schmidt and M. Siddikov, Phys. Rev. D 86, 113018 (2012) and D 89, 053001 (2014); G.R.Goldstein,O.G.Hernandez,S.LiutiandT.McAskill,AIPConf.Proc.1222(2010)248. [6] B.PireandL.Szymanowski,Phys.Rev.Lett.115,092001(2015);B.PireandL.Szymanowski, arXiv:1510.01869. [7] M.Diehl,Eur.Phys.J.C19,485(2001). [8] M. Diehl et. al. Phys. Rev. D 59, 034023 (1999); J. C. Collins et. al., Phys. Rev. D 61, 114015 (2000). [9] D.Yu.Ivanovetal.,Phys.Lett.B550,65(2002);R.Enberg,B.PireandL.Szymanowski,Eur. Phys.J.C47,87(2006). [10] M. Guidal and M. Vanderhaeghen, Phys. Rev. Lett. 90, 012001 (2003); A. V. Belitsky and D.Mueller,Phys.Rev.Lett.90,022001(2003). [11] E.R.Berger,M.DiehlandB.Pire,Eur.Phys.J.C23(2002)675. [12] M.Diehletal.,Phys.Lett.B411(1997)193;A.V.Belitsky,D.MuellerandA.Kirchner,Nucl. Phys.B629,323(2002). [13] B.Pire,L.SzymanowskiandJ.Wagner,workinprogress. [14] T.Kurimoto, H.n.LiandA.I.Sanda, Phys.Rev.D65, 014007(2002); T.Kurimoto, H.n.Li andA.I.Sanda,Phys.Rev.D67,054028(2003). [15] M.ElBeiyadet.al.,Phys.Lett.B688,154(2010). [16] D.S.Ayresetal.[NOvACollaboration],hep-ex/0503053;J.Mousseauetal.[MINERvACol- laboration],arXiv:1601.06313[hep-ex];seealsoM.L.Mangano,S.I.Alekhin,M.Anselminoet al.,CERNYellowReportCERN-2004-002,pp.185-257[hep-ph/0105155].

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.