Astronomy&Astrophysicsmanuscriptno.velamalacaria_revised cESO2016 (cid:13) February19,2016 Probing the stellar wind environment of Vela X-1 with MAXI C.Malacaria1,2,T.Mihara2,A.Santangelo1,K.Makishima2,3,M.Matsuoka2,M.Morii2,andM.Sugizaki2 1 InstitutfürAstronomieundAstrophysik,Sand1,72076Tübingen,Germany e-mail:[email protected] 2 MAXIteam,RIKEN,2-1Hirosawa,Wako,Saitama351-0198 3 DepartmentofPhysics,TheUniversityofTokyo7-3-1Hongo,Bunkyo-ku,113-0033Tokyo,Japan February19,2016 6 1 0 ABSTRACT 2 Context.VelaX-1isoneofthebest-studiedandmostluminousaccretingX-raypulsars.Thesupergiantopticalcompanionproduces b astrongradiativelydrivenstellarwindthatisaccretedontotheneutronstar,producinghighlyvariableX-rayemission.Acomplex e phenomenology that is due to both gravitational and radiative effects needs to be taken into account to reproduce orbital spectral F variations. 8 Aims.WehaveinvestigatedthespectralandlightcurvepropertiesoftheX-rayemissionfromVelaX-1alongthebinaryorbit.These 1 studiesallowconstrainingthestellarwindpropertiesanditsperturbationsthatareinducedbythepulsatingneutronstar. Methods.WetookadvantageoftheAllSkyMonitorMAXI/GSCdatatoanalyzeVelaX-1spectraandlightcurves.Bystudyingthe ] orbitalprofilesinthe4 10and10 20keVenergybands,weextractedasampleoforbitallightcurves( 15%ofthetotal)showing E adiparoundtheinferio−rconjunction−,thatis,adouble-peakedshape.Weanalyzedorbitalphase-averaged∼andphase-resolvedspectra H ofboththedouble-peakedandthestandardsample. Results.Thedipinthedouble-peakedsampleneedsN 2 1024cm 2tobeexplainedbyabsorptionalone,whichisnotobserved h. inouranalysis.WeshowthatThomsonscatteringfromHan∼exte×ndedand−ionizedaccretionwakecancontributetotheobserveddip.Fit p byacutoffpower-lawmodel,thetwoanalyzedsamplesshoworbitalmodulationofthephotonindexthathardensby 0.3aroundthe - inferiorconjunction,comparedtoearlierandlaterphases.Thisindicatesapossibleinadequacyofthismodel.Incontr∼ast,includinga o partialcoveringcomponentatcertainorbitalphasebinsallowsaconstantphotonindexalongtheorbitalphases,indicatingahighly r t inhomogeneous environmentwhosecolumndensityhasalocalpeakaroundtheinferiorconjunction. Wediscussourresultsinthe s frameworkofpossiblescenarios. a [ Keywords. X-rays:binaries–stars:neutron–stars:winds–accretion–pulsars:individual:VelaX-1 2 v 51. Introduction center,andDthedistanceofthecompactobjectfromthecenter 3 ofthecompanion. 7VelaX-1istheprototypeoftheclassofwind-fedaccretingX-ray TheobservedaverageX-rayluminosityof 4 1036erg/sis 7binaries.Thesourcehasbeendiscoveredin 1967(Chodiletal. ∼ × consistentwithawind-fedaccretingpulsarscenario(seeEq.1). 01967)andislocatedatadistanceof 2kpc(Nagase1989).Itis ∼ However,itistypicalofVelaX-1toshow"off-states"inwhich .aneclipsingsupergiantHighMassX-rayBinary(HMXB),con- 1 it becomes faint for several 102 103s, and "giant flares", sisting of a neutron star (NS) with mass M 1.77M (Rawls 0 NS − et al. 2011) and a B0.5Ib optical companion,∼HD 775⊙81, with when the source flux suddenly increases up to a factor of 20 6 (Kreykenbohmetal.2008;Sidolietal.2015).Densityinhomo- 1mass MB 23M and radius RB 30R (van Kerkwijk et al. :1995). ∼ ⊙ ∼ ⊙ geneities are observed in the matter during the accretion stage v (seeMartínez-Núñezetal.2014,andreferencestherein)andare AsketchofthebinarysystemisshowninFig.1.Thebinary i considered a possible reason for the observed X-ray flux vari- Xorbitis almostcircular (eccentricitye 0.089),with a periodof ∼ ability. 8.9d(Kreykenbohmetal.2008).TheNSorbitsataclosedis- r a∼tancefromthecompanion’ssurface,0.7R attheapastron,and Orbital phase-resolved studies of VelaX-1, both observa- B itiscontinuouslyembeddedinitsstrongstellarwind,character- tional and theoretical (see Blondin et al. 1991, and references izedby M˙ = 1.5 2 10 6M yr 1 (Watanabeetal.2006) therein),provideevidenceofastrongsystematicmodulationof wind − − andterminalvelocity−v ×1100km⊙s 1(Prinjaetal.1990).Pass- theabsorbingcolumndensitywithorbitalphase.Thisisalsoob- − ingwithintheNSaccre∞ti∼onradius,r =2GM /v2 ,thiswind servedinotherHMXBs(seetheseminalcaseofCenX–3,Jack- acc NS rel is accreted onto the compact object, powering the X-ray emis- son 1975, and more recently, the study of IGR J17252–3616, sion,withluminosity Manousakis et al. 2012). Such an effect is generally attributed totheNSinfluenceonthestellarwindbyvariousmechanisms. These include the formation of a tidal stream trailing the NS L = (GMNS)3M˙wind , (1) (dueto the almostfilled Roche lobe of the companion),the X- X R v4 D2 rayphotoionizationofthewind(whichleadstotheformationof NS rel aStrömgrensphereandaphotoionizationwake),andanaccre- whereGisthegravitationalconstant,R 10kmistheNSra- tionwakethatsurroundsthecompactobject(duetothefocusing NS ∼ dius,v therelativevelocityofthewindseenfromtheaccretion ofthestellarwindmediumbytheNSgravitationalinfluence).A rel Articlenumber,page1of10page.10 A&Aproofs:manuscriptno.velamalacaria_revised Table1.Observationtimeandephemerisusedforlightcurvesfolding. 150 0 0. Parameter Value 9 100 0. ∆T [MJD]a 55133 56674 0. Obs ÷ 1 P[d] 8.964357 0.000029 ± T [MJD]b 55134.63704 50 0.8 Mid−Eclipse nds ] 0 0.2 N(b)oTteask.en(a)asTtihmeephsapsaen-zoerfot.he MAXI observations used in this work; o c -se 0.7 sample of double-peaked orbital profiles in two energy bands, t h -50 whosedipisaroundtheinferiorconjunction.Weperformorbital g [ li 0.3 phase-averagedand phase-resolvedspectroscopywith different modelsandanalyzeourresultsusingthemostrecentstellarwind 0. -100 6 accretionscenarios. 4 0. 0 .5 2. Observationsanddata -150 The all-sky monitor MAXI (Matsuoka et al. 2009) is operating from the International Space Station (ISS) since August 2009. To Earth -200 It consists of two slit cameras working in two complementary -150 -100 -50 0 50 100 150 energy bands: the Solid-state Slit Camera (SSC, Tomida et al. [ light-seconds ] 2011)inthe0.7 10keV,andtheGasSlitCamera(GSC,Mihara − etal.2011)inthe2 20keVenergybands.Hereweonlyused Fig. 1. Orbital sketch of the binary system VelaX-1 as observed − archival GSC data. The GSC module is composed of 12 pro- from Earth. The blue disk centered at (0,0) is the optical companion portionalcounters,eachofwhichconsistsofaone-dimensional HD77581. The black solid line is the NS elliptical orbit. The gray dashed rays and the respective numbers indicate the orbital phases. slit-slatcollimatorandaproportionalcounterfilledwithXe-gas. Phasezeroistakenatthemid-eclipsetime.Theredstraightsolidline Assembled,theyallowcoveringafieldofviewof1.5 160deg2, × crossing the ellipse represents the major axis, pointing the periastron observing about 75% of the whole sky at each ISS revolution andtheapastronattheintersectionswiththeNSorbit. ( 92min), and 95% per day. The GSC typically scans a point ∼ sourceontheskyfor40 150sduringeachISSrevolution(the − actualtimedependsonthe sourceincidentangleforeachGSC sketchof thebinarysystem whereallthesestructuresareillus- counter).Thedailyfluxsourcesensitivityat5σc.l.inthefullen- tratedisshowninFig.2. ergybandisabout20mCrab,andthe1σc.l.energyresolutionis Many authors have reported on the X-ray light curve and 18%at5.9keV(Sugizakietal.2011).Thesepropertiesallowed spectral modulation of VelaX-1 around the inferior conjunc- frequently observing VelaX-1 along its orbit and to collecting tion (e.g., Eadie et al. 1975, Watson & Griffiths 1977, Nagase datafromthissourceformorethanfouryears. 1989). At the same time, the emission from the optical com- WeextractedspectraandlightcurvesofVelaX-1fromGSC panion also shows modulation with the orbital phase. An ab- data covering almost the whole MAXI operation time, that is, sorption feature was reported by Smith (2001), who observed from55133to56674MJD(seeTable1).Ourdatawereproperly a dip in the VelaX-1 UV light curve around the transit phase correctedtoaccountforthetime-dependenteffectiveareaofthe (0.46 < φ < 0.70 in their work, where φ = 0 is the mid- cameras.Allextractedspectrawererebinnedtocontainatleast eclipse). Moreover, Goldstein et al. (2004), analyzing spectro- 200 photonsper energybin. Following the MAXI team recom- scopicChandradatatakenatthreedifferentphases(i.e.,eclipse mendation,we addeda systematic errorata levelof 1% to the φ = 0,φ = 0.25andφ = 0.5),foundanabsorbed“eclipse-like” finalcountratesoftheextractedspectra. spectrum at φ = 0.5 in the soft X-ray energy range. Similarly, Watanabeetal.(2006)foundanextendedstructureofdensema- terial that partially covers the X-ray pulsar, which is between 3. Orbitalprofilessamplesanalysis the X-ray emitter and the observer at the inferior conjunction. The mission-long light curve of VelaX-1 as observed by Morerecently,Naiketal.(2009)analyzedorbitalphase-resolved MAXI/GSC is providedby the MAXI team1 at differentenergy spectraofVelaX-1observedwithRXTE,findinglargevariation ranges.Itexhibitsarichvarietyoftimingphenomena.However, of the absorbing column density along the orbital phase (up to weherefocusontheorbitalpropertiesofthesource.We there- 1024cm 2),buttheirobservationsdonotcoverthewholeorbit, − foreextractedMAXI/GSClightcurveswithatimeresolutionof that is, their data do not include observations between the in- 6hintwoenergybands,4 10and10 20keV.Then,wefolded ferior conjunction and the apastron. Finally, Doroshenko et al. − − the light curves to produce average orbital profiles in the two (2013) have shown that the observed increasing absorption at chosenenergybands,usingtheorbitalephemerisfromKreyken- lateorbitalphasedoesnotagreewithexpectationsforaspheri- bohmetal. (2008)thatwe reportin Table1. The phasezerois callysymmetricsmoothwind. takenat the mid-eclipsetime (see Fig. 1). The resulting orbital Inthispaperwe presentthe spectroscopicalandlightcurve light curves are shown in Fig. 3, where the strongest changes analysis of VelaX-1 observed with the Monitor of All-sky X- rayImage(MAXI).Ourdatashowanexcellentcoverageofthe 1 TheentireMAXI/GSCVelaX-1lightcurvecanbeexploredathttp: entireorbitandextendovermorethanfouryears. We extracta //maxi.riken.jp/top/index.php?cid=1&jname=J0902-405 Articlenumber,page2of10page.10 C.Malacariaetal.:VelaX-1observedwithMAXI Fig.2. Sketchof thebinary systemVelaX-1whereboth radiativeandgravitational effectsareillustratedat threedifferent orbital phases. The photoionizationwakeisrepresentedasadisk-likestructuretoshowboththecumulativeeffectalongoneentireorbit(theredring)andthemore localizedeffect(thefainterredtail)trailingtheNSattheinferiorconjunction.Aclumpystellarwind,notshowninthepicture,mayalsobetaken intoaccountforamorecompletescenario. ofdatapointsineachphasebinequalto4(i.e.,1dobservation), 4-10 keV whichleavesuswithatotalof84statisticallyacceptablecycles. 0.15 10-20 keV Thisallowedustoperformasystematicanalysisofthosemem- bers that differ from the template in each of the three defined phasebins.Forthesystematiccomparisonofthemembers’pro- fileagainstthetemplate,weconsideredonlytherelativeshape, 0.10 avoiding any bias from flux variation. For this reason, we nor- e at malized each member with a normalization factor equal to the unt r ratiooftheaveragecountratebetween0.10 0.85andthetem- o − C plateaveragecountrateinthesamephaseinterval.Successively, 0.05 wesubtractedthecountratesofthetemplatefromthecountrates of each memberin the X, Y, and Z phase bins. To evaluatethe templateand the membercountrate in each phase bin,we cal- X Y Z culated the median of the data points. The obtained count rate differenceisreferredtoastheresidualswithrespecttothetem- 0.00 plate.TheresidualsofthemembersfromthetemplatefortheY 0.0 0.2 0.4 0.6 0.8 1.0 phase-bininthe4 10keVenergybandareshowninFig.4.This Orbital Phase − plotshowsa scattered distributionof the residuals,as expected Fig.3. VelaX-1folded orbital light curves in4 10 (bluedots), and becauseof thehighvariabilityofthe source.However,theplot 10 20keV (red triangles) energy ranges. The−horizontal bars indi- alsoclearlyshowsthatresidualstendtoclustertowardnegative cate−the phase-bin. The mid-eclipse time is taken as the phase zero. values.Therefore,weperformedanewanalysisandstackedonly Thethreeorbitalphasebins(X,Y,andZ)usedforthephase-resolved those members that had high (> 30%) negative residuals (i.e., spectroscopy ofthedouble-peaked sampleareindicated(seetext).(A < 0.0345cnt/s)in the Y phase bins andat the same time low colorversionofthisfigureisavailableintheonlinejournal). (<−30%) residuals in the X and Z phase bins. This allowed us toobtainanewaverageorbitalprofileinthe4 10keVenergy − band,madeof12outof84totalorbitalcycles(i.e.,about15% areobservedinthesofterbandlightcurve.Thisisexplainedas oftheanalyzedcycles).ThisisshowninFig.5.Usingadifferent strongabsorptioncolumnmodulationalongthebinaryorbit. definition of the residuals, where the ratio between the median Successively,weconsideredthedifferencebetweenindivid- valuesistaken(insteadoftheirdifference),showstheverysame ualorbitallightcurves(definedas the membersof the sample) trendasthatinFig.4,andleadstothesameselectedprofiles. andtheaverageorbitalprofile(definedasthetemplate).Toob- tain a smooth template of the two folded light curves, we in- terpolatedwith a cubic spline functionbetween all the pairs of Since our normalization procedure could remove flux- consecutivedatapoints(theknots)ofthelightcurves. dependentfeatures,wecarefullyverifiedthattheseselectedpro- From our line of sight, the accretion wake effects are more fileswerenotassociatedwithaspecificluminositylevelbefore prominent for about 0.2 in orbital phase (i.e., about 1.5days) normalization.In addition, for all of these 12 selected profiles, around the inferior conjunction (see Fig. 1). To properly sam- thenullhypothesiswastestedagainstthetemplatewithnormal- ple these effects, we defined three orbital phase bins that we ity tests (χ2, Kolmogorov-Smirnov,Shapiro-Wilk) and was re- call X, Y, and Z, correspondingto phase intervals 0.15 0.35, jectedata significancelevelhigherthan3σ. Furthermore,they − 0.35 0.55,and0.55 0.75,respectively(seeFig.3).Foranalo- all show a median value in the Y phase-bin that deviates at − − gousreasonsweimposedforeachmemberaminimumnumber least3σfromthetemplate.Theseprofilesarecharacterizedbya Articlenumber,page3of10page.10 A&Aproofs:manuscriptno.velamalacaria_revised 0.06 0.20 4-10 keV 0.04 0.15 0.02 0.10 ] /s] 0.00 2m esiduals[cnt −−00..0042 ate [ ph / s / c 000...100405 10-20 keV R R 0.12 Y nt −0.06 ou 0.10 C 0.08 −0.08 0.06 0.04 −0.10 0.02 55000 55200 55400 55600 55800 56000 56200 56400 56600 56800 0.00 Time[MJD] 0.0 0.2 0.4 0.6 0.8 1.0 Orbital Phase Fig. 4. Residuals of single orbital profiles from the template in the Fig.5.Averageorbitalprofilesofthedouble-peakedandofthestandard 4 10keV energy band for the Y phase-bin (see text). The residuals − samplesin4 10keV(top)and10 20keV(bottom).Thebluedotsare arecomparedtotheobservationtimeonthex-axis.Thethinblackline − − thedatapointsobtainedbystackingthememeberswithlargeresiduals isthezero-value,whilethereddashedlineisthe30%limitbelowwhich intheYphasebin(seetext).Theverticalerrorbarscorrespondtothe theselectioncriterionintheYphase-binisfullfilled.Errorbarscorre- standarddeviationoftheaverageofthecountratesineachphasebin, spondtothesamplestandarddeviation(σ/√N,withNnumberofdata whilethehorizontalbarsindicatethephase-binwidth.Thereddashed points). Not all the profiles below the red dashed line are selected as linesrepresentsthefunctioninterpolatedbetweenthedatapointsofthe double-peakedprofilesbecauseoftheconditionsimposedontheXand standardsamplesineachenergyband. Zphase-bins. sity(N )alongtheentirelineofsight.Weassumedsolarabun- double-peakshapeandafluxdroparoundtheinferiorconjunc- H dancesby Anders & Grevesse (1989)for this. Using the metal tion.Werefertothemasthedouble-peakedsample. abundancesofKaperetal.(1993)forHD77581(i.e.,sub-solar Similar results are obtained if the same procedure is per- C, andsuper-solarN, Al) doesnotaffectourresults, whichare formedinthe10 20keVenergyband.Inthiscase,theselected − wellconsistentwithin1σ.Therefore,weusedsolarabundances profilesare11outof84.Theoverallprofileshapeisverysimi- throughouttherestoftheanalysis.WealsoaddedtwoironGaus- lartotheprofileobtainedinthe4 10keVenergyband,witha − sianlinecomponents(Odakaetal.2013),KαandKβat6.4and double-peakmorphologyandadiparoundtheinferiorconjunc- 7.08keV.. The same components were included in the models tion. The extracted sample in the 10 20keV energy band is − usedforthephase-resolvedspectroscopy.Theresultsofthefits showninFig.5. are givenin Table 2. Both modelsreturnacceptablefits for the Finally,weextractedanotherindependentsampleinthetwo standardand thedouble-peakedsample.However,forthe stan- energy bands by stacking all the statistically acceptable orbital dardsample,thepartialcoveringmodeldescribesthedatanotas profiles exceptfor the double-peakedmembersin each respec- wellasthecutoffpower-lawmodel. tiveenergyband.Werefertothissampleasthestandardsample. Thestandardsampleorbitalprofilesinthetwoenergybandsare shownwithdashedlinesinFig.5. 5. Phase-resolvedspectralanalysis 5.1.Orbitalphase-resolvedspectroscopyofthe 4. Phase-averagedspectralanalysis double-peakedsample The orbital phase-averaged spectral analysis of VelaX-1 was Toinvestigatethenatureofthedipinthedouble-peakedsample, performedseparatelyforthetwosamplesdefinedinSect.3.Be- weextractedX-rayspectraofVelaX-1intheX,YandZorbital cause the physical problem is complex, a fully physical model phasebins.Forthis,wefilteredMAXI/GSCdatawithGTIscor- of the X-ray production mechanism in accreting X-ray pulsars respondingtothethreephasebinsinthedouble-peakedprofiles hasnotbeenimplementedsofar.Therefore,anempiricalmodel (seeSect.3).BasedontheresultsfromSect.4,weusedthesame hastobeused.Followingthecommonempiricalmodelusedin modelsaswereappliedinthephase-averagedcasetofittheor- theliterature(see,e.g.,Schanneetal.2007),we adoptedacut- bitalphase-resolvedspectra:(a) a cutoffpower-lawmodelplus offpower-lawmodel(cutoffplinXSPEC)towhichablackbody a blackbody component, and (b) a partial covering model. To component was added to account for soft excess (see Hickox avoidunphysicalbest-fitsolutionswhenmodel(a)wasused,we et al. 2004 and references therein). On the other hand, to ac- fixedthecutoffenergyandtheblackbodytemperaturetotheirre- countfortheexpectedinhomogeneousstructureoftheambient spectivephase-averagedvalues.Formodel(a)wealsocompared windinVelaX-1,wealsotestedthepartialcoveringmodel(pc- theresultsforafixed(tothephase-averagedvalue,Γ=0.27,see fabs*powerlaw in XSPEC) characterized by a local absorbing Table 2) or free photon index. We found that the model with component (Npc) that affects only a fraction f of the original freephotonindexisstatisticallypreferable(∆χ2 >20).Further- H spectrum.ThismodelhasalsobeensuccessfullyusedtofitNuS- more, fitting the Y phase bin spectrum, the modelwith a fixed tardataofVelaX-1(Fürstetal.2014).Tobothmodels,photo- photonindexleadstounphysicallyhighvaluesoftheblackbody electric absorption by neutral matter (Morrison& McCammon normalization(tocompensateforthesoftexcess).Thus,wedid 1983) was added, to account for the absorption column den- notconsiderthecutoffpower-lawmodelwithafixedphotonin- Articlenumber,page4of10page.10 C.Malacariaetal.:VelaX-1observedwithMAXI 0.8 0.6 φ2 0.5 Xbin 0.7 φ7 0.4 0.6 φ3 φ1 0.3 Γ 0.2 Zbin Γ 0.5 φ6 φ4 0.1 0.4 0.0 −0.1 Ybin 0.3 φ5 −0.2 2 4 6 8 10 12 14 0.2 2 4 6 8 10 12 14 NH [1022 cm−2] NH [1022 cm−2] Fig. 6. χ2 contour plots for the VelaX-1 double-peaked sample fitted withanabsorbedcutoffpower-lawmodelincludingablackbodycom- Fig. 7. χ2 contour plots for the VelaX-1 standard sample fitted with ponent(modela,seeTable3).Theellipsesareχ2-contoursfortwopa- anabsorbedcutoffpower-lawmodelincludingablackbodycomponent rameters(N andΓ).Thecontours correspond toχ2 +1.0 (thepro- (seeTable4).SymbolsarethesameasinFig.6.Therespectiveorbital H min jections of this contour to the parameter axes correspond to the 68% phasebinsareindicated. uncertaintyforoneparameterofinterest),χ2 +2.3(68%uncertainty min fortwoparametersofinterest),andχ2 +4.61(90%uncertaintyfortwo min parametersofinterest).Therespectiveorbitalphasebinsareindicated. a blackbody component, and (b) a partial covering model. To avoid unphysical best-fit solutions, we fixed the cutoff energy and the blackbodytemperatureof model(a) to their respective dexa viable modelin our analysis(similar considerationshold phase-averagedvalue.AsalreadymentionedinSect.5.1,model forthephase-resolvedspectroscopyofthestandardsample,see (b)returnstwo statistically equivalentsolutions:one where the Sect.5.2).Itisoftenpossibletofindastatisticallyequivalentso- partial covering component is statistically significant, and the lutionformodel(b)wherethepartialcoveringcomponentisnot otherwherethesamecomponentisnotnecessary.Insuchcases, necessary.Wetestedthesignificanceofthepartialcoveringcom- we adopted the solution in which the partial covering compo- ponentwith the F-test, includingsuch a componentonly when nentwasnotrequired,unlessitwassignificantata99%c.l.The it was significantat a 99%c.l. Otherwise, we preferredthe so- results are given in Table 4. All phase-resolved spectra return lutionswherethepartialcoveringcomponentwasnotincluded. goodfitsforeachofthetwotestedmodels.However,thecutoff Thesamecriterionwasadoptedforthestandardsamplecase(see power-lawmodelwithblackbodyshowsamarkedmodulationof Sect.5.2) thespectralphotonindexΓalongtheorbitalphase.Thetrendof Models(a)and(b)bothreturnagoodfit,andtheresultsare thismodulationissimilartothatobservedforthedouble-peaked shown in Table 3. Model (a) shows orbital modulation of the sample(seeSect.5.1).Foradeeperinvestigationoftheseresults, spectralphotonindexΓ.Tobetterexplorethespectralvariation, χ2-contourplotsofΓandNH wereproduced(seeFig.7). we produced χ2-contour plots of Γ and N in the three phase Thepartialcoveringmodelshowsonlymarginalvariationof H bins(seeFig.6). the photon index Γ, while the column density clearly changes Conversely, model (b) does not show photon index modu- along the orbital phase, and the covering fraction is consistent lation along the orbital phase, although it shows variation of with a constant value. A plot of the standard sample phase- thecolumndensity.Aplotofthedouble-peakedphase-resolved resolvedspectrafitwith thepartialcoveringmodelisshownin spectrafitwiththepartialcoveringmodelisshowninFig.8. Fig.9. 5.2.Orbitalphase-resolvedspectroscopyofthestandard 6. Discussion sample Themainobservationalresultsofourworkcanbesummarized Similarly to the double-peaked sample, we performed orbital asfollows: phase-resolved spectroscopy of the standard sample. However, forthissample,thestatisticsismuchhigherthanintheprevious – About 15% of the orbital light curves in VelaX-1 shows a case, so that a finer binning is possible. We divided the stan- double-peakedorbitalprofile,withadiparoundtheinferior dard sample profile into seven phase bins, each one wide 0.1 conjunction,bothinthe4 10keVand10 20keVenergy − − in phase, from 0.1 to 0.8. Phase bins around the eclipse time bands; are notsuitable for our purpousesand suffer from lower statis- – orbitalphase-resolvedspectraofboththedouble-peakedand tics,thereforetheywerenotanalyzedinourwork.Theanalyzed thestandardsamplearewellfitbyacutoffpower-lawmodel phasebinsarelabeledφ,withi = 1,...,7.Thenwefilteredour andbyapartialcoveringmodel; i data with GTIs corresponding to the seven orbital phase bins – the cutoff power-law model leads to orbital modulation of andextractedorbitalphase-resolvedspectraofthestandardsam- boththespectralphotonindexandthecolumndensity; ple.BasedontheresultsfromSect.4,wefitthephase-resolved – apartialcoveringmodelfitsthedataequallywell.Noorbital spectra with the same two models: (a) a cutoff power-lawwith modulationof the spectral photonindex is observedin this Articlenumber,page5of10page.10 A&Aproofs:manuscriptno.velamalacaria_revised Table2.Best-fitspectralparametersoftheorbitalphase-averagedspectrafromthedouble-peakedandstandardsamples.Theerrorscorrespondto the1σ-uncertainties. Model CutoffPL+BB Part.Cov. Sample Double-peaked Standard Double-peaked Standard N /1022cm 2 3.91+0.43 4.29+0.31 2.55+2.18 2.02+0.68 H − 0.36 0.30 2.55 0.79 N pc/1022cm 2 –− –− 14.9−+16.0 12.7−+2.5 H − 5.4 1.7 Cov.Fract.pc – – 0.63−+0.21 0.64+−0.07 0.18 0.06 Γ 0.27+0.04 0.48+0.06 1.09+−0.10 1.13+−0.03 0.03 0.06 0.07 0.03 E [keV] 15.3−+0.4 20.1−+2.5 –− –− cut 3.4 2.0 kT [keV] 0.16+−0.04 0.14+−0.06 – – BB 0.04 0.08 χ2/D.o.F.=χ2 285/311−=0.92 393/351−=1.12 318/311=1.02 480/352=1.36 red Notes.(pc)PartialCoveringModel. Table3.Best-fitspectralparametersofthephase-resolvedspectrafromthedouble-peakedsample.Theerrorscorrespondtothe1σ-uncertainties. Phase-bins X Y Z Model CutoffPL+BB Part.Cov. CutoffPL+BB Part.Cov. CutoffPL+BB Part.Cov. N /1022cm 2 2.02+0.41 3.68+0.29 3.89+0.93 2.49+2.07 11.9+1.1 16+1 H − 0.31 2.16 0.87 2.49 1.0 3 N pc/1022cm 2 –− –− –− 16.1+−11.3 –− –− H − 5.3 Cov.Fract.pc – – – 0.64+−0.17 – – 0.09 − E [keV] 15.3(fixed) – 15.3(fixed) – 15.3(fixed) – cut Γ 0.44+0.04 1.12+0.02 0.02+0.06 0.91+0.29 0.29+0.06 1.10+0.05 0.03 0.04 − 0.06 0.11 0.06 0.05 Norm 0.110−+0.009 0.235−+0.014 0.003+−0.005 0.129−+0.151 0.089−+0.015 0.256−+0.042 PL 0.008 0.017 0.005 0.038 0.01 0.031 kT [keV]b 0.16(fi−xed) –− 0.16(fi−xed) –− 0.16(fi−xed) –− BB χ2/D.o.F.=χ2 113/121=0.93 121/120=1.00 113/108=1.05 117/107=1.09 101/102=0.99 113/101=1.11 red Notes.(pc)PartialCoveringModel.(b)Blackbodycomponent. case.Incontrast,orbitalmodulationofthecolumndensityis Thesampleofdouble-peakedorbitalprofiles,obtainedfrom observed. the very long MAXI/GSC monitoring of Vela X-1, shows a re- markabledip at phase Y, also in the 10 20keVband. This is In the following we discuss our results within the context − challengingtoexplainsolelybyinvokingabsorptionfromneu- ofthemostrecentwindaccretionscenariosthathavebeenpro- tralmatter.TheX-rayfluxobservedatthedipphaseisabouthalf posedforVelaX-1. ofthefluxinthestandardsampleatthesamephase(seeFig.3). Tohalvealuminosityof 4 1036erg/sinthe10 20keVband, 6.1.Double-peakedorbitallightcurve a column density value ∼of N×H 2 1024cm−2 i−s needed, 10 ∼ × ∼ timeshigherthanwhatisobservedinourstudy. Indications of a double-peaked orbital light curve in Vela X-1 In addition,hydrodynamicalsimulationsof stellar windsin havealreadybeenreportedbyearliestobservationsofthesource HMXBs(Blondinetal.1991,Manousakisetal.2012)predicta withArielV(Eadieetal.1975;Watson&Griffiths1977).Based localpeakofthecolumndensityN aroundtheinferiorconjunc- onTenmadata,Nagase(1989)foundanincreaseofthecolumn H tionontheorderof1023cm 2.Thisagreeswithourobservations. density along the NS orbit, in particularafter the transit phase. − We also mention that the INTEGRAL analysis of Fürst et al. Blondinetal.(1991)tookbothgravitationalandradiativeeffects (2010)highlightsapossibledip-likefeaturearoundthetransitin into accountand reproducedthe observedorbitalphase depen- the phase-resolvedflux histogramsof VelaX-1 at 20 60keV, denceofthecolumndensity.Theyfoundthatanaccretionwake − that is, at an energy band that is almost unaffected by absorp- that extends toward the observer’s line of sight at the inferior tion. Our conclusion is therefore that some additional mecha- conjunctionproducesalocalpeakinthecolumndensityabsorp- nism must be at work that contributes to the flux reduction at tionalongthebinaryorbit. the inferior conjunction,and that is triggered only in a limited Intriguing evidence on the accretion wake in VelaX-1 was sampleoforbitalcycles. obtainedbySmith(2001),whoinferredthatahotsourcearound thetransitphaseoftheNSispresentbyanalyzingHeλ1640ab- Acontributiontotheobservedreducedfluxcouldcomefrom sorptionlinestrengths.BasedonChandraX-raydata,Watanabe theComptonscatteringatthelow-energylimit,wherethecross etal.(2006)alsohaveinferredthepresenceofadensecloudob- sectionischaracterizedbyonlyaweakdependenceonthepho- scuringthecompactsourceattheinferiorconjunction.Allthese tonenergyandcanbeapproximatedbytheThomsonscattering results are tightly related to the observationalfeaturesreported crosssection(σ = 6.65 10 25cm2).ToefficientlyscatterX- T − × inthiswork. raysfromtheaccretingpulsar,thesurroundingsofthecompact Articlenumber,page6of10page.10 Table4.Best-fitspectralparametersoftheorbitalphase-resolvedspectrafromthestandardsample.Theerrorscorrespondtothe1σ-uncertainties. Sample CutoffPL+BB(E =20.1keVfixed,kT b =0.14keVfixed) cut BB Phase-bin φ φ φ φ φ φ φ C 1 2 3 4 5 6 7 . M N /1022cm 2 4.86+0.55 2.57+0.31 1.85+0.35 3.24+0.48 6.25+0.68 11.5+0.9 11.9+1.0 a H − 0.42 0.29 0.33 0.46 0.64 0.8 0.9 la Γ 0.58−+0.03 0.72−+0.02 0.58−+0.03 0.49−+0.03 0.33−+0.04 0.55+−0.04 0.63+−0.05 ca NormPL 0.111−+000...00030098 0.194−+000...00021009 0.126−+000...00030077 0.095−+000...00030076 0.066−+000...00030055 0.11−+000...000411 0.12−+000...000511 riaet χ2/D.o.F.=χ2red 173/212−=0.82 233/247−=0.94 244/237−=1.03 216/228−=0.95 246/228−=1.08 216/205−=1.05 204/199−=1.03 al.: V Model PartialCovering ela X Phase-bin φ1 φ2 φ3 φ4 φ5 φ6 φ7 -1 o NH/1022cm−2 6.3+10..30 1.7+11..27 0.+1.4 2.2+01..953 5.6+00..96 13.3+01..77 13.7+01..77 bse N pc/1022cm 2 –− 7.1−+7.9 6.4+4.4 13−+8 32+−10 –− –− rv H − 2.0 1.0 4 8 ed Cov.Fract.pc – 0.49−+0.29 0.68−+0.02 0.51+−0.19 0.61−+0.05 – – w Γ 1.09+0.03 1.26−+00..2045 1.13−+00..2055 1.12−+00..1008 1.23−+00..0138 1.08+0.04 1.15+0.04 ith 0.02 0.03 0.04 0.06 0.19 0.04 0.04 M Nχ2o/rDm.oP.FL.=χ2 1920/2.2111−−+00=..00110.91 2500/.24407−+−00=..00641.01 2480/2.2366−+−00=..00321.05 2120/.22267−+−00=..00740.94 2510/2.3297−+−00=..21771.11 2370/2.2024−+−00=..00221.16 2190/1.2938−+−00=..00221.11 AXI red Notes.(b)Blackbodycomponent.(pc)PartialCoveringModel. A r tic le n u m b e r, p a g e 7 o f 1 0 p a g e .1 0 A&Aproofs:manuscriptno.velamalacaria_revised x1 0.01 x1 0.01 normalized counts s keV−1−1 10−3 x0.2 normalized counts s keV−1−1 1100−−43 xxxx0x0000....0.000125325 x0.01 x0.1 10−5 2 2 χ 0 χ 0 −2 −2 5 Energy (keV) 10 5 10 Energy (keV) Fig.8.Orbitalphase-resolvedspectraofthedouble-peakedsamplefit- Fig.9.Orbitalphase-resolvedspectraofthestandardsamplefitwitha tedwithapartialcoveringmodel,whensignificant(seetext).Thetop partialcoveringmodel,whensignificant(seetext).Thetoppanelshows panelshowsfromtoptobottomdataandfoldedmodelofthethreespec- fromtoptobottomdataandfoldedmodelofthespectrainphasebins trainphasebinsX,Y,andZ.Thespectrahavebeenmultipliedbythe from φ to φ . The bottom panel shows the residuals for the best-fit factorshownaboveeachcurveontheleftsideforbettervisualization. 1 7 model.SymbolsarethesameasinFig.8.SeeTable4forallspectral Thebottompanelshowstheresidualsforthebest-fitmodel.SeeTable3 parameters. forallspectralparameters. 6.2.Spectralresults 6.2.1. Orbitalphase-averagedspectroscopy objectneedtobeionizedanddenseenough.Hydrodynamical2D and 3D simulations of the stellar wind in VelaX-1 by Mauche Orbital phase-averagedspectra in the 2 20keV energy range − et al. (2008) showed that the interaction of the wind with the of both the double-peakedand the standard sample were mod- NSleadstostrongvariationsofthewindparameters.Theseau- eledwithacutoffpower-lawmodel,addingablackbodycompo- thors found that the accretion wake reaches high temperatures nenttoaccountforthesoftexcess,andwithpartialcovering(Ta- ( 108K) and a high ionization parameter (ξ = L /(nR2 ) ble2).Forthedouble-peakedsample,bothmodelsreturnagood 1∼04ergcms 1, where n is the number density at axgiveniponoin∼t, fit. For the standard sample the partial covering model is only − while R is the distance from this point to the X-ray source). marginallyacceptable,whilethecutoffpower-lawdescribesthe ion The accretion wake extends to scales on the order of the op- datawell. tical companion size (R 1012cm) with a number density of Asaresultoftheinhomogeneousenvironmentinwhichthe 109 12cm 3,which,taki∼nganaveragevalueofn 1010cm 3, NS travels along the binary orbit, our phase-averaged results − − − ∼leads to a column density of 1023cm 2. This i∼s similar to are not straightforward in terms of physical interpretation. In- − the values obtained from our s∼pectral analysis of the double- stead, these results were used to avoid unphysicalbest-fitsolu- peakedsampleintheYphasebin(seeSect.6.2.2andTable3). tions of the orbital phase-resolved spectra, fixing some of the Moreover,thebremsstrahlungcoolingtimeisabout1011√T/ns modelparameterstotheirphase-averagedvalue(seeSect.6.2.2 (Rybicki & Lightman 1979) that is, 105s, or about one day, andSect.6.2.3). ∼ whichagreeswiththeobservedtimedurationofthedip.Inother words, the gas stays ionized for a time long enough to allow 6.2.2. Double-peakedsamplephase-resolvedspectroscopy Thomsonscattering. The ionizedgas is nottraced by the spec- tralabsorptionin the softX-rayband.Nonetheless,its electron Fitting the phase-resolved spectra of the double-peaked sam- density n is high enough to result in an optical depth value of plewith a cutoffpower-lawresultsin orbitalmodulationofthe τ=nlσ =0.5 0.7(wherel=2 1012cmisthelengthofthe photon index (see Table 3), which has never been observed in T accretionwake).−Thus,whentheio×nizedstreamoftheaccretion VelaX-1 to the best of our knowledge.The spectrum becomes wakepassesthroughtheobserver’sdirection,thatis,duringthe harder at the inferior conjunction (Y phase bin) than at earlier transit,asubstantialpartoftheX-rayradiationcanbeefficiently and later phases (X and Z phase bins, respectively). Contour scattered out of our line of sight. This scenario is further sup- plotsforNH andΓ(showninFig.6)appearclearlydistinctfrom portedbythenormalizationofthepower-lawcomponent,which one phase bin to another, indicating that the modulation is not appearstobemodulatedalongtheorbit(seeTable3),indicating duetotheintrinsiccouplingbetweenthetwoparameters. anintrinsicallydimmerfluxattheinferiorconjunction(although Prat et al. (2008) reported photon index modulation along largeparameteruncertaintiesneedtobeconsidered). thebinaryorbitofHMXBIGRJ19140+0951.Theseauthorsas- cribedtheobservedorbitalmodulationtoavariablevisibilityof Stellar-windvariabilitymaythenberesponsibleforthemod- theregionthatproducesthesoftexcess.Sincewedonotobserve ifications of the accretion wake, which in turn modify the or- anymodulationoftheblackbodycomponent,ourstudydoesnot bitallightcurveshape,alternatingbetweenadouble-peakedand supportthisinterpretation.Tothebestofourknowledge,wedid a standardmorphology.We thereforeconcludethatthe ionized notfindanyreliablephysicalinterpretationforthisphenomenon. gas in the hot accretion wake, combined with its high column Modeling with partial covering does not show an orbital density, is a possible cause for the dip that is observed at the modulation of the photon index. This model results in absorp- inferiorconjunctioninthedouble-peakedsamplelightcurves. tionincreasealongtheorbitalphase(seeSect.6.2.3foramore Articlenumber,page8of10page.10 C.Malacariaetal.:VelaX-1observedwithMAXI comprehensivediscussion of this result) and in a partialcover- High-resolution spectroscopic observations carried out at ingcomponentwithhighcoveringfractionneededattheYphase critical orbital phases are necessary in future to distinguish bin,whichisnotrequiredatearlierorlaterphases,however(see amongdifferentmodelsandconstrainstellarwindscenariosand Table3).Apossibleinterpretationoftheseresultsisgivenbythe accretionmodalitiesinVelaX-1. oscillatingbehavioroftheaccretionwake(Blondinetal.1990). Becauseoftheorbit-to-orbitvariationsoftheambientwind,the 6.2.3. Standardsamplephase-resolvedspectroscopy tail of the accretion wake is expected to oscillate with respect toourlineofsight.Averagingthisbehavioroverseveralorbital Modeling phase-resolved spectra of the standard sample with periodswouldresultinalargecoveringfraction,wherethewob- a cutoff power-law leads to a hardening of the spectra around blingaccretionwakesimulatesaninhomogeneousabsorbingen- theinferiorconjunctionofabout∆Γ 0.35.Aswepointedoutin vironment. Sect.6.2.2,aphysicalmechanismfor∼suchanorbitaldependence A different interpretation might be that an intrinsically in- ofthephotonindexisnotknownandisdifficulttoexplain. homogeneous structure is present around the inferior conjunc- On the other hand, fitting the spectra with a partial cover- tionandpartiallycoverstheX-raysource.Inhomogeneousstel- ingmodelshowsthattheneutralmatter columndensity N in- H larwindsfromsupergiantstars(so-calledclumps)areexpected creasestowardlaterphases,varyingfrom 1022 aftertheegress (Runacres&Owocki2005)andobserved(Goldsteinetal.2004, (φ ),to 1023cm 2beforetheingress(φ ).∼Thisagreeswithear- 1 − 7 and references therein), and have been suggested as the cause lier stud∼ies of VelaX-1 (see, e.g., Nagase 1989), and a similar for VelaX-1 flaring activity (see Kreykenbohmet al. 2008and phenomenonhasbeenobservedinotherHMXBsaswell,forin- Martínez-Núñezetal.2014).Thetimescaleonwhichclumpshit stance,in4U1700-37(Haberletal.1989).Basedontheanalysis theX-raypulsarisontheorderofthewind’sdynamictimescale ofbothoptical(Carlberg1978;Kaperetal.1994)andX-raydata (Feldmeieretal.1996),ithasbeenshownthattheaccretionwake 0.5R 1011cm B 1000s (2) is notadequateto explainthe later phase (φ > 0.5)absorption, v ∼ 1100km/s ∼ andthatamoreextendedphotoionizationwakeisnecessary. ∞ where 0.5R is the average separation between clumps Whenthismodelisapplied,thespectralphotonindexmod- B (Sundqvist et al. 2010). Thus, if we consider the X-ray source ulation along the orbital phase is only marginal. Based on the on longer timescales, the resulting effect is a partially covered best-fitresults,wecanadopthereasimilarinterpretationasfor spectrum. However, if the partial covering is due to the inho- the double-peaked sample results, that is, an inhomogeneous mogeneousstructureoftheambientwind,nomodulationofthis ambient medium that produces strong absorption of the X-ray componentwith orbital phase would occur. In contrast, our re- emissionandwhoseabsorptionefficiencydependsontheorbital sults underline the necessity of partial coveringonly for the Y phase(see Sect.6.2.2).Thecolumndensityshowsa localpeak phase bin spectra, where the obscuration effect of the accre- of NHpc∼3 × 1023cm−2 around the inferior conjunction, similar tionwakeismaximized.Hydrodynamicalsimulations(Blondin towhatisobservedforthedouble-peakedsample,strengthening etal.1990,1991)revealedthattheaccretionwakeiscomposed the connectionwith the accretion wake. Moreover,this sample ofcompressedfilamentsofgasandrarefiedbubbles.Moreover, needsthepartialcoveringcomponentalsotofitthespectrumof recent models also showed that density perturbations in stellar thephasebinφ2,whichislocatedaroundtheNSgreatesteastern windsofOBstars onlydevelopatdistanceslargerthanthe NS elongation(seeFig.1).Regardlessofwhetherthepartialcover- orbitalradiusinVelaX-1(r 1.1R ,seeFig.2inSundqvist& ing is dueto a wobblingor an inhomogeneousaccretionwake, ⋆ Owocki 2013). Therefore,in∼trinsic stellar wind clumps around these results indicate at a wake that affects the observations at the X-ray pulsar could be not structured enough to trigger the earlierphasesthantheinferiorconjunction. observedhighX-rayfluxvariability.Instead,theinhomogeneous We therefore conclude that the absorbing (and likely inho- structurecharacteristicoftheaccretionwaketrailingtheNSin- mogeneous)materialthatpartiallycoverstheX-raypulsarmight dicatesthatthecompactobjectcouldbeabletoperturbtheambi- beduetoadifferentinfluenceoftheaccretionwakeatdifferent entwindsuchthatclumpsareformedatitspassage.Thesphere orbitalphases. of influence of the X-ray pulsar is dictated by its accretion ra- dius,r 1011cm(Feldmeieretal.1996)andbytheStrömgren sphereadcce∼finedbythephotoionizationparameterξ = L /(nR2 ), 7. Summary x ion whichleads(seeSect.6.1forparameterdefinitionsandvalues) We have presented the results of a very long MAXI observa- to a photoionizationradiusRion 0.2RB 6 1011cm racc. tionofVelaX-1,whichallowedustoperformdetailedspectral ∼ ∼ × ∼ SincetheorbitalvelocityoftheNSisvorbit 280km/s,theper- (phase-averaged and phase-resolved, in 2 20keV) and light turbationtimescaleisabout ≈ curve(in4 20keV)analysis.Ourresultsca−nbesummarizedas − R follows: t = ion 2 104s 5.5h (3) pert v ≈ × ∼ orbit – About 15% of the orbital light curves in VelaX-1 shows a which can be considered as an upper limit for the X-ray vari- double-peakedorbitalprofile,witha 1.5daydiparoundthe ∼ ability induced by accretion of locally formed clumps. This inferiorconjunctioninthe4 10keVand10 20keVenergy − − is consistent with observations which showed that flares in bands. VelaX-1 last from 102s up to 104s (see Ducci et al. 2009; – Explaining the dip around the inferior conjunction by ab- Martínez-Núñezetal.2014,andreferencestherein). sorption alone requirescolumn density values of about2 Even though the inhomogeneousstructure characteristic of 1024cm 2,whicharenotobservedinouranalysis. × − the accretion wake might be a possible cause for the observed – Thedipinthedouble-peakedsamplemightbeproducedby partialcoveringaroundtheinferiorconjunction,itcannotbedi- consideringcontributionfromThomsonscatteringbyanion- rectly probed within the context of our MAXI analysis, which ized accretion wake that is elongated toward the observer onlyallowsinferringthelong-termpropertiesofthesourceav- during the transit. Intrinsic variability of the stellar wind eragedoverseveralorbitalphasebins. leads to strong variations of the accretion wake, including Articlenumber,page9of10page.10 A&Aproofs:manuscriptno.velamalacaria_revised its ionization degree,thus to alternatingdouble-peakedand Chodil,G.,Mark,H.,Rodrigues,R.,Seward,F.D.,&Swift,C.D.1967,ApJ, standardprofiles. 150,57 – Whenfitwithacutoffpower-lawmodel,thedouble-peaked Doroshenko,V.,Santangelo,A.,Nakahira,S.,etal.2013,A&A,554,A37 Ducci,L.,Sidoli,L.,Mereghetti,S.,Paizis,A.,&Romano,P.2009,MNRAS, and the standard samples both show spectral hardening 398,2152 aroundtheinferiorconjunction(by 0.3intermsofthepho- Eadie,G.,Peacock,A.,Pounds,K.A.,etal.1975,MNRAS,172,35P ∼ ton index). We did not find any reliable physical interpre- Feldmeier,A.,Anzer,U.,Boerner,G.,&Nagase,F.1996,A&A,311,793 tation for this phenomenon, which likely indicates that the Fürst,F.,Kreykenbohm,I.,Pottschmidt,K.,etal.2010,A&A,519,A37 modelisinadequateforVelaX-1. Fürst,F.,Pottschmidt,K.,Wilms,J.,etal.2014,ApJ,780,133 Goldstein,G.,Huenemoerder,D.P.,&Blank,D.2004,AJ,127,2310 – Orbitalphotonindexmodulationisavoidedifapartialcover- Haberl,F.,White,N.E.,&Kallman,T.R.1989,ApJ,343,409 ingcomponentisusedaroundtheinferiorconjunction.This Hickox,R.C.,Narayan,R.,&Kallman,T.R.2004,ApJ,614,881 component indicates a highly inhomogeneousenvironment Jackson,J.C.1975,MNRAS,172,483 and local column density peak values of 3 1023cm 2 Kaper,L.,Hammerschlag-Hensberge, G.,&vanLoon,J.T.1993,A&A,279, − ∼ × 485 around the inferior conjunction (orbital phases around the Kaper,L.,Hammerschlag-Hensberge,G.,&Zuiderwijk,E.J.1994,A&A,289, eclipsewerenotanalyzed). 846 – Ourresultssuggesteitherawobblingoraninhomogeneous Kreykenbohm,I.,Wilms,J.,Kretschmar,P.,etal.2008,A&A,492,511 accretionwake as the source of the partialcoveringaround Manousakis,A.,Walter,R.,&Blondin,J.M.2012,A&A,547,A20 the inferior conjunction. Gravitational and radiative effects Martínez-Núñez,S.,Torrejón,J.M.,Kühnel,M.,etal.2014,A&A,563,A70 Matsuoka,M.,Kawasaki,K.,Ueno,S.,etal.2009,PASJ,61,999 from the X-ray pulsar may be responsible of density inho- Mauche,C.W.,Liedahl,D.A.,Akiyama,S.,&Plewa,T.2008,inAmericanIn- mogeneitiesin the ambient wind that successively feed the stituteofPhysicsConferenceSeries,Vol.1054,AmericanInstituteofPhysics observed high X-ray variability. Moreover, the absorption ConferenceSeries,ed.M.Axelsson,3–11 properties of the accretion wake seem to take place at ear- Mihara,T.,Nakajima,M.,Sugizaki,M.,etal.2011,PASJ,63,623 lierphasesthantheinferiorconjunction. Morrison,R.&McCammon,D.1983,ApJ,270,119 Nagase,F.1989,PASJ,41,1 – Someoftheanalyzedorbitalphase-binspectradonotneeda Naik,S.,Mukherjee,U.,Paul,B.,&Choi,C.S.2009,AdvancesinSpaceRe- partialcoveringcomponent.Therefore,anyspectralanalysis search,43,900 ofVelaX-1needstoconsidertheorbitalphaseatwhichthe Odaka,H.,Khangulyan,D.,Tanaka,Y.T.,etal.2013,ApJ,767,70 observationhasbeencarriedout. Prat,L.,Rodriguez,J.,Hannikainen,D.C.,&Shaw,S.E.2008,MNRAS,389, 301 Prinja,R.K.,Barlow,M.J.,&Howarth,I.D.1990,ApJ,361,607 Acknowledgements. Wegratefullyacknowledgetheanonymousrefereefornu- Rawls,M.L.,Orosz,J.A.,McClintock,J.E.,etal.2011,ApJ,730,25 merouscommentsthatgreatlyimprovedthemanuscript.Thisworkissupported Runacres,M.C.&Owocki,S.P.2005,A&A,429,323 bytheInternationalProgramAssociate(IPA)ofRIKEN,Japan,andbytheBun- Rybicki,G.B.&Lightman,A.P.1979,Radiativeprocessesinastrophysics(New desministeriumfürWirtschaftundTechnologiethroughtheDeutschesZentrum York,Wiley-Interscience,1979.) fürLuft-undRaumfahrte.V.(DLR)underthegrantnumberFKZ50OR1204. Schanne,S.,Götz,D.,Gérard,L.,etal.2007,inESASpecialPublication,Vol. C.M.gratefullythankstheentireMAXIteamforthecollaborationandhospital- 622,ESASpecialPublication,479 ityinRIKEN.C.M.alsothanksV.DoroshenkoandL.Ducci(IAAT,Tübingen) Sidoli,L.,Paizis,A.,Fürst,F.,etal.2015,MNRAS,447,1299 forusefuldiscussions. Smith,M.A.2001,ApJ,562,998 Sugizaki,M.,Mihara,T.,Serino,M.,etal.2011,PASJ,63,635 Sundqvist,J.O.&Owocki,S.P.2013,MNRAS,428,1837 Sundqvist,J.O.,Puls,J.,&Feldmeier,A.2010,A&A,510,A11 References Tomida,H.,Tsunemi,H.,Kimura,M.,etal.2011,PASJ,63,397 vanKerkwijk,M.H.,vanParadijs,J.,Zuiderwijk,E.J.,etal.1995,A&A,303, Anders,E.&Grevesse,N.1989,Geochim.Cosmochim.Acta,53,197 483 Blondin,J.M.,Kallman,T.R.,Fryxell,B.A.,&Taam,R.E.1990,ApJ,356, Watanabe,S.,Sako,M.,Ishida,M.,etal.2006,ApJ,651,421 591 Watson,M.G.&Griffiths,R.E.1977,MNRAS,178,513 Blondin,J.M.,Stevens,I.R.,&Kallman,T.R.1991,ApJ,371,684 Carlberg,R.G.1978,PhDThesis(TheUniversityofBritishColumbia(Canada)) Articlenumber,page10of10page.10