ebook img

Probing the emission physics and weak/soft population of Gamma-Ray Bursts with LOFT PDF

1.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Probing the emission physics and weak/soft population of Gamma-Ray Bursts with LOFT

Probing the emission physics and weak/soft population of Gamma-Ray Bursts with LOFT 5 1 0 2 n a White Paper in Support of the Mission Concept of the J 2 Large Observatory for X-ray Timing 1 ] E H . h Authors p - o L.Amati1,G.Stratta2,J-L.Atteia3,M.DePasquale4,E.DelMonte5,B.Gendre6, tr D.Götz7,C.Guidorzi8,L.Izzo9,C.Kouveliotou10,J.Osborne11,A.V.Penacchioni9, s a P.Romano4,T.Sakamoto12,R.Salvaterra13,S.Schanne7,J.J.M.in’tZand14, [ L.A.Antonelli5,J.Braga15,S.Brandt16,N.Bucciantini17,A.Castro-Tirado18, 1 V.D’Elia19,M.Feroci5,F.Fuschino5,D.Guetta20,F.Longo21,M.Lyutikov22, v T.Maccarone23,V.Mangano24,M.Marisaldi1,S.Mereghetti13,P.O’Brien11, 2 7 E.M.Rossi25,F.Ryde26,P.Soffitta5,E.Troja10,R.A.M.J.Wijers27,B.Zhang28 7 2 0 . 1 IASFBologna,Italy 15INPE,SaoJosédosCampos,Brazil 1 2 UniversityofUrbino,Urbino,Italy 16TechnicalUniversityofDenmark,Lyngby,Denmark 0 5 3 IRAPToulouse,France 17OsservatorioAstrofisicodiArcetri,Firenze,Italy 1 4 IASFPalermo,Italy 18IAA,Spain : 5 IASFRoma,Italy 19ASIScienceDataCenter,Italy v i 6 ARTEMIS,Nice,France 20ObservatoryofRome,Rome,Italy X 7 IRFU/CEASaclay,91191GifsurYvette,France 21UniversityofTrieste,Trieste,Italy r 8 UniversityofFerrara,Ferrara,Italy 22PurdueUniversity,WestLafayette,IN,USA a 9 ICRANet,Italy 23TexasTechUniversity,Lubbock,TX,USA 10NASAMarshallSpaceFlightCenter,Huntsville,AL, 24PennStateUniversity,PA,USA USA 25UniversityofLeiden,Leiden,Netherlands 11UniversityofLeicester,Leicester,Italy 26UniversityofStockholm,Stockholm,Sweden 12AoyamaGakuinUniversity,Tokyo,Japan 27UniversityofAmsterdam,Amsterdam,Netherlands 13IASFMilano,Italy 28UniversityofNevada,LasVegas,NV,USA 14SRON,Utrecht,TheNetherlands Gamma-RayBurstswithLOFT Preamble TheLargeObservatoryforX-rayTiming,LOFT,isdesignedtoperformfastX-raytimingandspectroscopy with uniquely large throughput (Feroci et al., 2014a). LOFT focuses on two fundamental questions of ESA’s Cosmic Vision Theme “Matter under extreme conditions”: what is the equation of state of ultra- dense matter in neutron stars? Does matter orbiting close to the event horizon follow the predictions of generalrelativity? ThesegoalsareelaboratedinthemissionYellowBook(http://sci.esa.int/loft/ 53447-loft-yellow-book/)describingtheLOFT missionasproposedinM3,whichcloselyresembles theLOFT missionnowbeingproposedforM4. TheextensiveassessmentstudyofLOFT asESA’sM3missioncandidatedemonstratesthehighlevel ofmaturityandthetechnicalfeasibilityofthemission,aswellasthescientificimportanceofitsunique core science goals. For this reason, the LOFT development has been continued, aiming at the new M4 launch opportunity, for which the M3 science goals have been confirmed. The unprecedentedly large effectivearea,largegrasp,andspectroscopiccapabilitiesofLOFT’sinstrumentsmakethemissioncapable of state-of-the-art science not only for its core science case, but also for many other open questions in astrophysics. LOFT’s primary instrument is the Large Area Detector (LAD), a 8.5m2 instrument operating in the 2–30keVenergyrange,whichwillrevolutionisestudiesofGalacticandextragalacticX-raysourcesdown totheirfundamentaltimescales. ThemissionalsofeaturesaWideFieldMonitor(WFM),whichinthe 2–50keVrangesimultaneouslyobservesmorethanathirdoftheskyatanytime,detectingobjectsdownto mCrabfluxesandprovidingdatawithexcellenttimingandspectralresolution. Additionally,themissionis equippedwithanon-boardalertsystemforthedetectionandrapidbroadcastingtothegroundofcelestial brightandfastoutburstsofX-rays(particularly,Gamma-rayBursts). This paper is one of twelve White Papers that illustrate the unique potential of LOFT as an X-ray observatoryinavarietyofastrophysicalfieldsinadditiontothecorescience. Page2of14 Gamma-RayBurstswithLOFT 1 Summary TheLargeObservatoryForX-rayTiming(LOFT,Ferocietal.2012,2014b)isaspacemissionconceptstudied by ESA during an extended assessment phase in 2011–2013 as a candidate for an M3 mission within the CosmicVisionProgramme,andproposedasaM4mission. LOFT aimsatprobinggravityinthestrongfield environment of black holes and other compact objects, and investigating the state of matter at supra-nuclear densitiesinneutronstarsthroughX-raytimingwithunprecedentedsensitivity. Thepayloadiscomposedofthe LargeAreaDetector(LAD),inthe2–30keVenergyband,apeakeffectiveareaofabout8.5m2 andanenergy resolutionbetterthan260eV,andtheWideFieldMonitor(WFM),acodedmaskimagerwithafieldofview of4.1steradians,anenergyresolutionofabout300eVandapointsourcelocationaccuracyof1arcmininthe 2–50keVenergyrange(seeTable1). TheWFM(Brandtetal.,2012)willmonitorapproximately1/3ofthesky atanytime. Asdetailedinthenextsections,thankstoitsuniquecombinationoffieldofview(FOV),energyband,energy resolutionandsourcelocationaccuracy,combinedwiththecapabilityofpromptlytransmittingGammaRay Burst(GRB)positionstotheground,theLOFT/WFMwillachievescientificgoalsoffundamentalimportance andnotfulfilledbyGRBexperimentspresentlyflying(e.g., Swift, Konus/WIND,Fermi/GBM,MAXI)and futureapprovedmissions(seeTable2). Thesegoalscanbesummarizedasfollows: substantialincrease(withrespecttothepastandcurrentmissions)inthedetectionrateofX-RayFlashes • (XRF),asub-classofsofteventswhichconstitutesthebulkoftheGRBpopulationandstilllackinga goodbodyofobservationaldata. Withrespectto HETE-2/WXM(2–25keV),themostefficientXRF detectorflownsofar,LOFT/WFMwillincreasetheXRFdetectionrate7-fold,withanexpectedrateof 30–40XRFperyear; measurementoftheGRBspectraandtheirevolutiondownto2keVasanindispensabletoolfortesting • modelsofGRBpromptemission; detectionandstudyoftherarelydetectedtransientX-rayabsorptionfeaturesinmedium/brightGRBs, • particularlyduringtheirinitialstage. Thesemeasurementsareofparamountimportancefortheunder- standingofthepropertiesoftheCircum-BurstMatter(CBM)andhencethenatureofGRBprogenitors, whichisstillamajoropenissueinthefield. Thedetectionoftransientfeaturescanenableustodetermine theGRBredshift; extensionofGRBdetectionuptoveryhighredshift(z > 6),whichisoffundamentalimportanceforthe • studyofluminosityevolutionaryeffects,themeasurementofthestarformationrate,theevolutionofthe propertiesoftheinterstellarmedium,andpossibleforthediscoveryofpopulationiiistars; fast and accurate localization of GRBs to allow prompt multi-wavelength follow-up with ground and • spacetelescopes. Thiswillinturnleadtotheidentificationoftheopticalcounterpartsand/orhostgalaxies andtheredshift. GRBcosmologicalredshiftisafundamentalmeasurementforthescientificgoalslisted above. 2 Introduction Discoveredinthelate1960sbymilitarysatellitesandrevealedtothescientificcommunityin1973,Gamma-ray Bursts(GRBs)areoneofthemostintriguing“mysteries”ofmodernscience(Mészáros,2006;Gehrelsetal., 2009). Although being very bright (with fluences up to more than 10 4ergcm 2 released in a few tens of s) − − andveryfrequent(about0.8/dayasmeasuredbylowearthorbitsatellites),theiroriginandphysicsremained obscureformorethan20years. Hugeobservationaleffortsinthelastdecadeshaveprovided,amongothers,1)a Page3of14 Gamma-RayBurstswithLOFT Table1: MaincharacteristicsoftheLOFT instruments(basedonFerocietal.,2014b;Zaneetal.,2014;Brandtetal., 2014). LAD WFM Energyband(keV) 2–30(80) 2–50 Effectivearea 8.5m2 (at6keV) 90cm2 (peak) FOV 1deg 4.1sr Sensitivity(5σ) 0.1mCrabin100s 0.6Crabin1s 2.1mCrabin50ks Energyresolution 180–240eV 300eV Timingresolution 10µs 10µs Sourcelocation – 0.5–1arcmin Table2: CharacteristicsoftheLOFT/WFMcomparedwiththepastandpresentexperimentswithmajorimpactinGRB science,aswellwithfutureGRBexperimentsunderdevelopmentoradvancedstudy: theFrench-ChinesemissionSVOM (Godetetal.,2012),Lomonosov/UFFO–p,anexperimentbyaninternationalcollaborationledbyKoreaandTaiwanto belaunched onboard theRussian Lomonosov mission(Kim etal., 2012), theGRB Monitorof theJapanese CALET experimentontheInternationalSpaceStation(ISS)(Yamaokaetal.,2013). SeeSect.3. EnergyBand FOV Energyresolution Peakeff.area Sourcelocation Operation sr keV cm2 accuracy CGRO/BATSE 20keV–2MeV 4π 10(100) 1700 >1.7 ended ◦ ∼ BeppoSAX/WFC 2–28keV 0.25 1.2(6) 140 1 ended 0 HETE-2/WXM 2–25keV 0.8 1.7(6) 350 1–3 ended 0 Swift/BAT 15–150keV 1.4 7(60) 2000 1–4 active 0 ∼ Fermi/GBM 8keV–40MeV 4π 10(100) 126 >3 active ◦ Konus–WIND 20keV–15MeV 4π 10at100keV 120 – active SVOM 4keV–5MeV 2 2(60) 400 2–10 2021-2025 0 Lomonosov/UFFO–p 5–100keV 1.5 2(60) 191 5–10 2015–2020? 0 CALET/GBM 7keV–20MeV 3 5(60) 68 – 2015–2018? LOFT/WFM 2–50keV 4.1 0.3(6) 90 0.5–1 2025–2028 0 goodcharacterizationoftheburst-temporalandspectralproperties,2)theaccuratelocalizationanddiscoveryof theirmulti-wavelengthafterglowemissionbyBeppoSAX andSwift,3)thedeterminationoftheircosmological distance scale, and 4) the evidence of a connection of long GRBs (i.e. GRBs with burst duration > 2 s, Kouveliotouetal.1993)withtypeIb/csupenovae(SNe). However,ourunderstandingoftheGRBphenomenon isstillincompleteduetoseveralopenissues,bothobservationalandtheoretical. Theseinclude: identification andunderstandingofsub-classesofGRBs(short/long, X-rayFlashes, sub-energetic), physicsandgeometry of the prompt emission, unexpected early afterglow phenomenology (e.g. plateau and flares), the GRB/SN connection,thecosmologicaluseofGRBs,VHEemission,natureoftheinnerengine,andmore. InthisdocumentwebrieflyreviewinSect.3themainGRBscientifictopicsthatLOFT/WFMcanaccomplish. InSect.4wediscussX-rayafterglowfollow-upwiththeLADandGRBobservationsthroughtheLADcollimator. TheLOFT BurstAlertSystemandtherolethatLOFT couldplayinthemultiwavelengthandmultimessenger astronomyisdescribedinSect.5. 3 GRB Science with the WFM ManyissuesarestillopenonGRBs. InthissectionwebrieflydescribethemostrelevantGRBsciencethatcan beaddressedwiththeLOFT/WFMobservations. Page4of14 Gamma-RayBurstswithLOFT Figure1: Examplesofmeasurementswith1–1000keVcoverage. Left: Swift UVOT,XRT,BATandKonuslightcurves ofGRB060124. Thecountrateshavebeennormalizedtothepeakofeachlightcurveandoffsetverticallyforclarity (Romanoetal.,2006). Right: ExtrapolationtoX-raysofthebestfitmodels(Bandfunction,cut-offpowerlawandBB+ power-law)oftheBATSEspectrumofGRB980329(Ghirlandaetal.,2007). Apersistent“quasithermal”modelcouldbe ruledoutbasedonlowenergy(2–28keV)WFCdata. 3.1 Physics of the prompt emission LongGRBsaremostprobablyconnectedtothecollapseofmassivefastrotatingstars(collapsars,e.g.,Woosley, 1993;Paczyn´ski,1998). Inthemostextensivelydiscussedscenario,thecollapsarmodel,amassivestarexplodes asasupernova(SN)and thecollapsingcoreproducesablack hole: theGRBoriginatesfroma jetemerging alongtherotationaxis. ThebasicpropertiesoftheGRBafterglowemission(fluxandspectralshape)canbe satisfactorilyexplainedintheframeworkofthe"standard"fireballmodelplustheexternalshockscenario(Rees & Meszaros, 1992; Sari et al., 1998), where shocks are produced by the interaction of the GRB collimated, relativisticejectawiththesurroundinginterstellarmatter. Onthecontrary,thephysicsunderlyingthecomplex light curves and the fast spectral evolution of the "prompt" emission (i.e., the burst itself) is still far from understood. Presently,thereisaforestofmodelsinvokingdifferentoriginsoffireball(kineticenergydominated, Poyntingfluxdriven),ofshocks(internal,external)andofemissionmechanisms(synchrotronand/orInverse Comptonoriginatedintheshocks,directorComptonizedthermalemissionfromthefireballphotosphere,and mixturesofthese). ThesemodelscouldnotbedisentangledwithrecentFermiobservations(Zhang,2014). A simple analysis of the morphology of the light curve as a function of energy shows that a wealth of informationiscontainedinthepromptX-rayemissionofGRBs. Forinstance,thebroadeningandincreasing timelagofthepulsestowardslowerphotonenergiesisalsoacrucialtestfortheemissionmodels(Fig.1,left). PastobservationswithBeppoSAX/WFC(2-28keV)havedemostratedthatthemeasurementsofthelowenergy Page5of14 Gamma-RayBurstswithLOFT Figure2: X-rayflasheswillbeoneoftheGRBsciencemain targetsofLOFT/WFM.Left: 1sbackgroundsubtractedlight curveoftheX-rayFlashXRF020427intheBeppoSAX/WFC 2–28keVenergyband(Amatietal.,2004). Top: Spectralpeak energyE asafunctionofpeakflux,showingtheexistence peak of a sub-class of weak GRBs with very low values of E peak (i.e.,XRFevents)whichcanbesensitivelyinvestigatedonly bydetectorswithenergythresholddownto1–2keV. (<10keV) light curves and spectra are of key importance to discriminate among different emission models. AnimportantcircumstanceisthatforalargefractionofGRBs,theslopeofthetimeintegratedpromptX-ray (<10keV)emissionspectrumisinconsistentwiththepredictionsofopticallythinsynchrotronshockmodels (Preeceetal.,2000;Frontera&etal.,2000). InconsistencywasfoundalsowithComptonizedthermalemission ofthephotosphere(Ghirlandaetal.,2007)asshowninFig.1(right),pointingoutthat,ifpresent,thiscomponent shouldrapidlyevolvewithtime(seealsoe.g. Fronteraetal.2013). AnotherintriguingcaseisthedetectionbyBeppoSAXWFCsplusGRBMofatransientemissionfeatureinthe promptemissionofGRB990712(Fronteraetal.,2001)thatwasinterpretedasevidenceofblackbodyemission fromthefireballphotosphere. Evidenceofanevolvingthermalblackbodyspectrum(withtypicaltemperatures of5keV)wasdiscoveredalsointhelongGRB060218,forwhichSwift/XRTobservationsduringtheprompt emissionwereavailable(Campanaetal.,2006),andinterpretedasduetothesupernovashockbreakingoutof thestellarenvelope. 3.2 X-ray flashes Since 2000, anewclassoffasttransients(X-RayFlashes, XRFs)hasbeendiscoveredandstudied, firstby ∼ BeppoSAX (Heiseetal.,2001)andthenbyHETE-2 (Sakamotoetal.,2005;Pélangeonetal.,2008). XRFsshow similardurationsaslongGRBs,areisotropicallydistributedinthesky,haveasimilarrateofoccurrenceandare associatedwithverysimilartypeIb/cSNethatarefoundtoaccompanystandardlongGRBs(Soderbergetal., 2005). TheirmainpropertyishoweverthatmostofthepromptemissionoccursintheX-rayband(2–20keV), withnegligibleemissionathigherenergy(Fig.2). AnempiricaldefinitionofanXRFwasgivenasaGRBwitha 2–30keVover30-400keVfluxratiogreaterthanunity(Sakamotoetal.,2004). As shown by Kippen et al. (2003), XRFs fall naturally in the low energy wing of the GRB peak energy distribution. ThisclassislikelyalowerenergyextensionofGRBs. XRFssatisfythe‘Amati’relationbetween redshift-correctedpeakenergy E intheνF promptemissionspectrumandreleasedenergy E (Amatietal., p ν iso Page6of14 Gamma-RayBurstswithLOFT 2002;Amati,2006). AnalysisbasedonthecompleteHETE-2spectralcatalog(Pélangeonetal.,2008)showed thatmostXRFslieatlow/moderateredshiftand,importantly,theyarelikelypredominantintheGRBpopulation andcloselylinkedtothe‘classical’GRBs(Fig.2,right). InthefireballmodelparadigmforGRBs,XRFscouldbecharacterizedbyalowerbulkLorenzfactorthan GRBs,possiblyduetoahighbaryonloadofthefireball(‘dirtyfireball’). A‘cleanfireball’mayalsoproduce XRFs, because a gas outflow with higher Lorentz factor would cause internal shocks at larger radii where magneticfielddensity(orequivalentlyinternalenergy)issmaller(Mochkovitchetal.,2004). XRFsmaybethe missinglinkbetweenthemorenumerouspopulationofhard/luminousGRBsandtheclassofrelativelysoft/low luminosityGRBsassociatedwithaSNevent. Inaddition,verysoftXRFs(expecteddetectionrate 30–50yr 1) − ∼ mayformasub-classofsoft/ultrasofteventswhichmayconstitutethebulkoftheGRBpopulation(Pélangeon etal.,2008). ItisthusimportanttoextendtheXRFsampletoconfirmthesepredictions. Thiscanbedoneonly byextendingthebanddowntosoftX-rays. 3.3 X-ray spectral features Several long GRBs were associated with supenova emission (Stanek et al., 2003). However there are a few caseswithnoSN.Inaddition,therearecasesinwhichSNewithextremeexpansionvelocityoftheirremnants, thatisthemaincharacteristicofGRB-SN,havenosimultaneousGRBeventsassociatedwiththem,asinthe cases of SN2002ap (Wang et al., 2003), 2009bb (Soderberg et al., 2010), and that of 2012ap (Chakraborti etal.,2014). SeveralGRBprogenitorscenariosaredebated(e.g. collapsar,supranova,inducedgravitational collapse). ProbingthechemicalabundanceinthecircumburstenvironmentofGRBsisapossiblewaytotest progenitormodels(Levesqueetal.,2010). Thistaskisextremelychallengingintheoptical,however,andX-ray spectroscopyoftheearlyphasesoftheGRBpromptemissionprovidesacomplementary,and,inmanyrespects, auniquetoolforthisgoal. PastobservationswithBeppoSAX showedvariableabsorptionfeaturesintheX-rayspectrumoftheprompt emission of a few GRBs, namely GRB000528 (Frontera et al., 2004), GRB010214 (Guidorzi et al., 2003), GRB990705(Amatietal.,2000). Thesefeatureswerepresentinthefirstpart(rise)oftheburstandfadedaway soonafter. Thisisinlinewiththeoreticalexpectationsbecausemostoftheopacityevolution,whichisprincipally due to photoionization of gas-phase ions and of dust grain destruction, takes place in the early phase of the event(Böttcheretal.,1999;Lazzati&Perna,2003). Theobservedfeaturespointtothepresenceofaniron-rich circumburstenvironment,butnoconclusiveconstraintsontheprogenitormodelwereachievedgiventhelow statisticalquality. TheSwift mission(Gehrelsetal.,2004),inspiteoftheenormousefforttopromptlyfollow-up (slewtime 1min)inthe0.3–10keVbandtheGRBsdetectedwithSwift/BATinthehardX-rays(15-150keV), ∼ hasbeenunabletostudytheearlyphasesofthepromptemissiondownto1keV,whentheabsorptionfeatures areexpected(e.g.,inthecaseofGRB990705,theabsorptionfeaturewasvisibleonlyinthefirst13s). 3.4 High-z GRBs OurobservationalwindowontheUniverseextendsuptoz 10,wherethemostdistantobjectsdiscoveredso ∼ farreside,andthenrecoversatz = 1000,theepochofprimordialfluctuationsmeasuredbyBOOMERANG, WMAP, and Planck. The formation of the first objects, stars, and protogalaxies, should have taken place at epochscorrespondingtoz = 10–30, certainlybeyondz = 7. Discoveringandstudyingthefirst“light”from primordialgravitationallyboundedobjectsintheUniverseatsuchredshiftsisthusaprimarygoalofcosmology andastrophysics. FarinfraredandX-rayradiationaretheonlytwowavelengthregimesinwhichthesestudies canbeattempted,withtheX-rayrevealingthemostenergeticpartofthephenomenon. TheincreaseofthenumberofhighredshiftGRBsandtheirfew-arcminlocalization,neededtoallowoptical follow-up and hence redshift determination, is of fundamental importance not only for GRB physics and progenitors,butalsoforthestudyofthestarformationrateevolution,ofpopulationiiistarsand,moreingeneral, Page7of14 Gamma-RayBurstswithLOFT 1000 15 LOFT 3years Swift-BAT 1s]− 10 BATSE z) 1year 2− Fermi-GBM > 100 m ( c SVOM N h n p o [V uti ke 5 rib 000 dist 10 ak,1–1 ulative e m p F u c 1 2 1 10 100 0 2 4 6 8 10 Epeak [keV] redshiftz Figure3: IllustrativeplotsofLOFT/WFMcapabilitiesandoftheirimpactinGRBscience. Left: GRBdetectionsensitivity intermsofpeakfluxsensitivityasafunctionofthespectralpeakenergyE (Band,2003)oftheLOFT/WFM(red)forM4 p configurationcomparedtothoseofCGRO/BATSE(green),Swift/BAT(blue),Fermi/GBM(brown),andSVOM/ECLAIRs (cyan). Right: CumulativeredshiftdistributionoflongGRBspredictedforLOFT/WFMandcomputedassumingabroken power-lawGRBluminosityfunctionandapuredensityevolution(seeSalvaterraetal.,2012,forthedetailsofthemodel). AtthefluxlimitofLOFT/WFMwepredictabout1–2GRBsyr 1atz>6,correspondingto3–6high-zGRBsin3years. − ofthepropertiesoftheuniverseattheionizationepoch. Severalrecentstudies(Salvaterraetal.,2008,2009) showthatloweringthethresholdoftheGRBdetectorenergybandcanincreasesubstantiallythesensitivityto high-zGRB(seealsoFig.3,right). 3.5 SN shock breakout Wide-fieldsoftX-raysurveysarepredictedtodetecteachyearhundredsofsupernovaeintheactofexploding throughtheSNshockbreakoutphenomenology. AccordingtorecentSNrateestimates(Horiuchietal.,2011), abouttwoSNebreakoutsperyearshouldbedetectedwiththeLOFT widefieldmonitorwithin20Mpc. SNshockbreakouteventsoccurinX-raysattheverybeginningofthesupernovaexplosions,allowingfor follow-upatotherwavelengthstostartextremelyearlyoninthesupernova,andpossiblysheddinglightonthe natureoftheprogenitorofsometypesofSNe. Todate,onlyoneSNshockbreakouthasbeenunambiguously detected,inSwift observationsofNGC2770. Ithasafast-rise,exponentialdecaylightcurvewitharisetimeof 72seconds,andanexponentialdecaytimescaleof129seconds,andapeakX-rayluminosityof6.1 1043ergss 1 − × (Soderberg et al., 2008). More uncertain is the case of GRB 060218, the X-ray prompt emission of which (observedwithSwift/XRT)wasinterpretedastheevidenceofaSNshockbreakout(Campanaetal.,2006). If we take the case of NGC 2770 as a template, the optimum integration time to detect such events out to 20Mpcis240s(i.e.,WFMsensitivity 30mCrab). ∼ 3.6 Expected performance of the LOFT/WFM LOFT/WFMaddressesmostoftheGRBscientificopenissuesdiscussedintheprevioussection. TheWFM outperformsinspectralresolution,sourcelocationaccuracy,andfieldofviewthetwoearliermaininstruments capableofmeasuringGRBpromptemissiondownto2keV(BeppoSAX/WFCandHETE-2/WXM)aswellas Page8of14 Gamma-RayBurstswithLOFT GRB 090618 − WFM+GBM: BB+PL (Black, Blue) vs. Band(Red) 0 0 1 m s keV)−2−1−1 100 mskeV−2 −1 −1 10 keV (Photons c2 10 counts c 2 5 10 20 10 100 Energy (keV) Energy (keV) Figure4: ExamplesofLOFT/WFMsimulationsoftheGRBpromptemission(burst)spectrafrom. Left: SimulatedWFM spectraofthefirst 50sofGRB090618(fromIzzoetal.2012)obtainedbyassumingeithertheBandfunction(black)or ∼ thepower-lawplusblack-bodymodel(red)whichequallyfittheFermi/GBMmeasuredspectrum,whichisalsoshown (blue). Theblack–bodypluspower-lawmodelcomponentsbest–fittingtheFermi/GBMspectrumarealsoshown(black dashedlines). Right: SimulationofthetransientabsorptionfeatureintheX-rayenergybanddetectedbyBeppoSAX/WFC inthefirst8sofGRB990705aswouldbemeasuredbytheLOFT/WFM(Amatietal.,2000). otherpast,presentandfuturehighenergyinstruments(Table2). ThiswillallowWFM,possiblyincombination withotherGRBexperimentsflyingatthesameepoch,toprovideauniquecontributiontothefulfilmentofthe scientificgoalsmentionedabove. Morespecifically,theWFMlowenergythresholdisfundamentalforthedetectionandstudyofXRFs,high-z GRBs,andsofttransientX-rayabsorptionfeatures,forwhichenergyresolutionof300eVatenergies<10keV is mandatory. A FOV of about 4sr combined with a sensitivity of 0.5Crab (in 1s integration time) in the ∼ 2–50keVenergybandisrequiredtodetectandlocalize 120GRBsperyear(including 1–2eventsatz > 6, ∼ ∼ Fig.3)andperformtimeresolvedspectroscopyof 2/3ofthem. ∼ AsestimatedwiththeBeppoSAX/WFCandHETE-2/WXMlogN-logS and E distributions(Vetereetal., p 2007; Sakamoto et al., 2005), about 2/3 of GRBs are X-Ray Flashes (XRFs) or X-Ray Rich (XRRs) GRBs. LOFT/WFMhasamuchbetterefficiencyforthedetectionofXRFswithrespecttomainGRBdetectorslike CGRO/BATSE,Swift/BATandFermi/GBM.InFigure 3(left)weshowtheexpectedpeakfluxsensitivityasa functionofthespectralpeakenergyE (followingthemethodproposedbyBand,2003). p Starting from the logN-logP from 2–25keV HETE-2/WXM data and: 1) taking into account the FOV differencebetweenHETE-2/WXMandLOFT/WFM;2)assuming80%observationefficiency;3)assuminga totalof120LOFT/WFMGRBperyear,theLOFT/WFMwillincreasetheXRFdetectionperyearbyafactorof 7withrespecttoHETE-2/WXM(Sakamotoetal.,2005). Thisresultsinanestimatedrateof36LOFT XRFs ∼ peryear,oratotalnumberof108LOFT XRFdetectionsin3years(180for5years),tocomparedforexample withthe19XRFin3yearsdetectedwithHETE-2/WXM(Sakamotoetal.,2005). Theextensionoftheenergybanddownto 2keVoftheLOFT/WFMwillmakeitmoresensitivetoverysoft ∼ XRFs. EventhemainGRBdetectoroftheChinese-FrenchSVOMmission,currentlyunderstudy,willnotbe abletoexplorebelow4keV. SimulatedWFMspectraofthefirst 50sofGRB090618wereobtainedbyassumingfirstaBandfunctionand ∼ thenapower-lawplusblack-bodymodel,whichdescribetheFermi/GBMmeasuredspectrumequallywell(Izzo etal.,2012). AsclearlyshowninFig.4,theextensionofthespectralmeasurementbelow10keVallowedbythe LOFT/WFMwillmakeitpossibletodiscriminatebetweentheBandandblack-bodypluspower-lawmodels. An energy resolution better than 15% (FWHM) for photon energies above 50keV is enough for accurate measurementofthepeakenergyoftheνF spectrum. Asimulationofthetransientabsorptionfeatureinthe ν Page9of14 Gamma-RayBurstswithLOFT X-ray energy band detected in the first 8s of GRB 990705 is plotted in Fig. 4, together with a simulation of how LOFT/WFM would detect the transient blackbody component in the X-ray energy band detected by BeppoSAX/WFCinGRB990712. Sourcelocationaccuracyofafewarcminutesisrequiredtotriggerfollow-upobservationsofthedetected transients by other telescopes, but it is also essential to achieve the GRB scientific objectives by means of multi-wavelengthandmulti-messengerstudies. ForthefurtheradvancementoftheGRBscienceitisessentialto haveinthe>2025time-frameaspaceinstrumentcapabletocontinueprovidingalertservice,presentlyprovided bytheSwiftsatellite,tospaceandgroundmulti-wavelengthtelescopes. Onboarddatahandlingisrequiredto allowpromptfollow-upobservations(seeSect.5). 4 Perspective GRB Science with the LAD WhiletheGRBsciencewiththeWFMwillcome‘forfree’,thecontributionfromtheLADconsistingpossibly ofthespectralandtimingcharacterizationofX-rayafterglowemissionupto 30keV,willcriticallydependon ∼ thefollow-upcapabilitiesandpoliciesofthemission,anditwillbestronglydependentonthetimethatwillbe requiredtostartaToOobservation. GRB science that could be performed by the LAD includes (see also Amati et al., Exp. Astr., submitted) theX-rayafterglowspectralandtemporalanalysis,andthesearchforemission/absorptionlines,predictedby theoreticalmodelsifthecircum-burstenvironmentwerehighlymetal-enriched. Spectralemissionandabsorption linesweredetectedintheX-rayafterglowsofonlyfewGRBs,namelyGRB000214byBeppoSAX(Antonelli etal.,2000),ofGRB991216byChandra (Piroetal.,2000)andmorerecentlyofGRB130925AbyNuSTAR (Bellmetal.,2014). However,nosuchfeaturesweredetectedsofarbySwift/XRT(Hurkettetal.,2008). Further observationsarestronglydesirableinordertoconfirmtheirexistenceandultimatelyexploitalltheirpotential informationontheGRBprogenitor,surroundingenvironmentandradiationmechanisms. SimulationshaveshownthatLOFT/LADcapabilitieswillenabletodetectemissionlineswithcharacteristics similartothoseobservedinthepast. Forexample,Figure6showssimulationsofanemissionlineat4.7keV astheonedetectedbyBeppoSAX/NFI12hoursafterthetriggerofGRB000214. Thecontinuumfluxusedin thesimulationwasfixedafactor2.6higherwithrespecttothe2-10keVfluxmeasuredforGRB000214,i.e. at 2 10 12 ergcm 2 s 1,correspondingtotheexpectedfluxat6hoursafterthetrigger(insteadof12hours),by − − − × assumingthemeasuredfluxdecayindexof1.4(Antonellietal. 2000),whilethelinefluxwasleftunaltered. Thelineisdetectedwithhighstatisticalconfidence. Providingfastfollow-up,e.g.,within5–10hoursfromthebursttrigger,asignificantfractionofGRBX-ray afterglows( 20%)havefluxesabovetheestimatedsensitivitylimitforLOFT/LAD(Fig.5). Simulationsshow ∼ thatwithinabout10hoursoftrigger,X-rayafterglowfluxeswillbedetectedbyLOFT/LADwithmoreefficiency andlessintegrationtimethanforSwift/XRT.X-rayafterglowstobefollowedwithLADcanbeselectedamong thebrightestGRBs,fromtheburstfluencethatcorrelateswithX-rayafterglowfluxes(Gehrelsetal.,2008). For theseGRBs,LOFT/LADwillenableinvestigationsoftheplateauphaseanditstransitiontothe“normaldecay”, whichmaymarktheenergyinjectionbyamagnetizedneutronstar(Nouseketal.,2006;Dall’Ossoetal.,2011). TheLADwillalsobesensitivetopromptGRBemission, evenwhentheGRBisoutsidethefieldofview, that is able to penetrate the LAD collimator. Preliminary Monte Carlo simulations show that, by combining thespectralefficiencyofthesilicondetectorswiththeLADcollimatortransparency,acollectingareaofafew hundredcm2 willbeavailable,wheretheexactvaluedependsontheoff-axisangleandthephotonenergy(see Marisaldietal.,LOFT WPonTGFs). Asaconsequence,GRBscanbedetectedthroughtheLADcollimator, enablingustoextendtheenergybandofthepromptemissionupto80keVandtoperformtiminganalysisinthe 2–80keVenergyband. Page10of14

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.