Astronomy&Astrophysicsmanuscriptno.13323 (cid:13)c ESO2010 January20,2010 Probing the ATIC peak in the cosmic-ray electron spectrum with H.E.S.S. F.Aharonian1,13,A.G.Akhperjanian2,G.Anton16,U.BarresdeAlmeida8 ⋆,A.R.Bazer-Bachi3,Y.Becherini12, B.Behera14,K.Bernlo¨hr1,5,A.Bochow1,C.Boisson6,J.Bolmont19,V.Borrel3,J.Brucker16,F.Brun19,P.Brun7, R.Bu¨hler1,T.Bulik24,I.Bu¨sching9,T.Boutelier17,P.M.Chadwick8,A.Charbonnier19,R.C.G.Chaves1, A.Cheesebrough8,L.-M.Chounet10,A.C.Clapson1,G.Coignet11,M.Dalton5,M.K.Daniel8,I.D.Davids22,9, B.Degrange10,C.Deil1,H.J.Dickinson8,A.Djannati-Ata¨ı12,W.Domainko1,L.O’C.Drury13,F.Dubois11, G.Dubus17,J.Dyks24,M.Dyrda28,K.Egberts1 ⋆⋆,D.Emmanoulopoulos14,P.Espigat12,C.Farnier15,F.Feinstein15, 0 A.Fiasson11,A.Fo¨rster1,G.Fontaine10,M.Fu¨ßling5,S.Gabici13,Y.A.Gallant15,L.Ge´rard12,D.Gerbig21, 1 B.Giebels10,J.F.Glicenstein7,B.Glu¨ck16,P.Goret7,D.Go¨ring16,D.Hauser14,M.Hauser14,S.Heinz16, 0 G.Heinzelmann4,G.Henri17,G.Hermann1,J.A.Hinton25,A.Hoffmann18,W.Hofmann1 ⋆⋆⋆,M.Holleran9, 2 S.Hoppe1,D.Horns4,A.Jacholkowska19,O.C.deJager9,C.Jahn16,I.Jung16,K.Katarzyn´ski27,U.Katz16, n S.Kaufmann14,E.Kendziorra18,M.Kerschhaggl5,D.Khangulyan1,B.Khe´lifi10,D.Keogh8,W.Kluz´niak24, a J T.Kneiske4,Nu.Komin15,K.Kosack1,R.Kossakowski11,G.Lamanna11,J.-P.Lenain6,T.Lohse5,V.Marandon12, J.M.Martin6,O.Martineau-Huynh19,A.Marcowith15,J.Masbou11,D.Maurin19,T.J.L.McComb8,M.C.Medina6, 0 2 R.Moderski24,E.Moulin7,M.Naumann-Godo10,M.deNaurois19,D.Nedbal20,D.Nekrassov1,B.Nicholas26, J.Niemiec28,S.J.Nolan8,S.Ohm1,J-F.Olive3,E.deOn˜aWilhelmi1,12,29,K.J.Orford8,M.Ostrowski23,M.Panter1, ] M.PazArribas5,G.Pedaletti14,G.Pelletier17,P.-O.Petrucci17,S.Pita12,G.Pu¨hlhofer14,M.Punch12, E A.Quirrenbach14,B.C.Raubenheimer9,M.Raue1,29,S.M.Rayner8,O.Reimer30,M.Renaud1,F.Rieger1,29, H J.Ripken4,L.Rob20,S.Rosier-Lees11,G.Rowell26,B.Rudak24,C.B.Rulten8,J.Ruppel21,V.Sahakian2, h. A.Santangelo18,R.Schlickeiser21,F.M.Scho¨ck16,R.Schro¨der21,U.Schwanke5,S.Schwarzburg18,S.Schwemmer14, p A.Shalchi21,M.Sikora24,J.L.Skilton25,H.Sol6,D.Spangler8,Ł.Stawarz23,R.Steenkamp22,C.Stegmann16,F. - o Stinzing16,G.Superina10,A.Szostek23,17,P.H.Tam14,J.-P.Tavernet19,R.Terrier12,O.Tibolla1,M.Tluczykont4, r C.vanEldik1,G.Vasileiadis15,C.Venter9,L.Venter6,J.P.Vialle11,P.Vincent19,M.Vivier7,H.J.Vo¨lk1,F.Volpe1, t s S.J.Wagner14,M.Ward8,A.A.Zdziarski24,andA.Zech6 a [ (Affiliationscanbefoundafterthereferences) 2 Received/Accepted v 5 0 ABSTRACT 1 0 The measurement of an excess in the cosmic-ray electron spectrum between 300 and 800 GeV by the ATIC experiment has - together with . 5 the PAMELA detection of a risein the positron fraction up to ≈100 GeV - motivated many interpretations in termsof dark matter scenarios; 0 alternativeexplanationsassumeanearbyelectronsourcelikeapulsarorsupernovaremnant.Herewepresentameasurementofthecosmic-ray 9 electronspectrumwithH.E.S.S.startingat340GeV.WhiletheoverallelectronfluxmeasuredbyH.E.S.S.isconsistentwiththeATICdatawithin 0 statisticalandsystematicerrors,theH.E.S.S.dataexcludeapronouncedpeakintheelectronspectrumassuggestedforinterpretationbyATIC. : TheH.E.S.S.datafollowapower-lawspectrumwithspectralindexof3.0±0.1(stat.)±0.3(syst.),whichsteepensatabout1TeV. v i Keywords.(ISM:)cosmic-rays-Methods:dataanalysis X r a 1. Introduction Kobayashietal.2004). Recently, the ATIC collaboration re- ported the measurement of an excess in the electron spectrum Very-high-energy (E & 100 GeV) cosmic-ray electrons1 (Changetal.2008). The excess appears as a peak in E3 Φ(E) lose their energy rapidly via inverse Compton scatter- whereΦisthedifferentialelectronflux;itcanbeapproximated ing and synchrotron radiation resulting in short cooling asacomponentwithapowerlawindexaround2andasharpcut- time and hence range. Therefore, they must come from off around620 GeV. Combinedwith the excess in the positron a few nearby sources (Shen1970, Aharonianetal.1995, fraction measured by PAMELA (Adrianietal.2009), the peak featureoftheATICmeasurementhasbeeninterpretedinterms ⋆ supportedbyCAPESFoundation,MinistryofEducationofBrazil ofadarkmattersignaloracontributionofanearbypulsar(e.g. ⋆⋆ [email protected] Malyshevetal.2009andreferencesgiventhere).Inthecaseof ⋆⋆⋆ [email protected] dark matter, the structure in the electron spectrum can be ex- 1 Thetermelectronsisusedgenericallyinthefollowingtoreferto plainedascausedbydarkmatterannihilationintolowmultiplic- bothelectronsandpositronssincemostexperimentsdonotdiscriminate ity final states, while in the case of a pulsar scenario the struc- betweenparticleandantiparticle. 2 Aharonianetal.:ProbingtheATICpeakintheCRe±spectrumwithH.E.S.S. turearisesfromacompetitionbetweenenergylossprocessesof mirrorreflectivitydegradesovertime anda reducedlightyield pulsar electrons (which impose an energy cutoff depending on correspondstoanincreasedenergythreshold.Thenewdataand pulsarage)andenergy-dependentdiffusion(whichfavorshigh- eventselection reducesthe eventstatistics butenablesto lower energyparticlesincaseofmoredistantpulsars). theanalysisthresholdto340GeV.Theeffectivecollectionarea The possibility to distinguish between a nearby electron at340GeVis≈4×104m2.Withalive-timeof77hoursofgood source and a dark matter explanation with imaging at- quality data, a total effective exposure of ≈ 2.2 × 107 m2srs mospheric Cherenkov telescopes has been discussed by is achievedat 340GeV. Owing to the steepnessof the electron Hall&Hooper2008. Imaging atmospheric Cherenkov tele- spectrum, the measurement at lower energies is facilitated by scopes have five orders of magnitude larger collection areas thecomparativelyhigherfluxes.Theζ distributionintheenergy than balloon and satellite experiments and can therefore mea- rangeof340to700GeVisshowninFig.1. sure TeV electrons with excellent statistics. Hall and Hooper The low-energyelectronspectrum resultingfrom this analysis assume that a structure in the electron spectrum should be vis- ible even in the presence of a strong background of misiden- tified nucleonic cosmic rays. However, the assumption of a s1400 smooth background is oversimplified; in typical analyses the nt e background rejection varies strongly with energy and without v E reliable control or better subtraction of the background, deci- 1200 H.E.S.S. 0.34-0.7 TeV sive results are difficult to achieve. In a recent publication, the High EnergyStereoscopic System (H.E.S.S.) collaborationhas Electrons 1000 shown that such a subtraction is indeed possible, reporting a Protons measurementoftheelectronspectrumintherangeof700GeV to5TeV(Aharonianetal.2008). 800 Best Fit Model 2. Thelow-energyextensionoftheH.E.S.S.electron 600 measurement Here an extension of the H.E.S.S. measurementtowards lower 400 energiesispresented,partiallycoveringtherangeofthereported ATICexcess.H.E.S.S.(Hinton2004)isasystemoffourimag- ing atmospheric Cherenkov telescopes in Namibia. While de- 200 signedforthemeasurementofγ-rayinitiatedair-showers,itcan beusedtomeasurecosmic-rayelectronsaswell.Thebasicprop- ertiesoftheanalysisofcosmic-rayelectronswithH.E.S.S.have 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 ζ been presented in Aharonianetal.2008. For the analysis, data from extragalactic fields (with a minimum of 7◦ above or be- Fig.1.Themeasureddistributionoftheparameterζ,compared lowtheGalacticplane)areusedexcludinganyknownorpoten- withdistributionsforsimulatedprotonsandelectrons,forshow- tial γ-ray source in order to avoid an almost indistinguishable ers with reconstructed energy between 0.34 and 0.7 TeV (the γ-ray contribution to the electron signal. As the diffuse extra- energyrangeoftheextensiontowardslowerenergiescompared galactic γ-ray background is strongly suppressed by pair cre- to the analysis presented in Aharonianetal.2008). The best ation on cosmic radiation fields (Coppi&Aharonian1997), its fit model combination of electrons and protons is shown as a contribution to the measured flux can be estimated following shadedband.TheprotonsimulationsusetheSIBYLLhadronic Coppi&Aharonian1997tobelessthan6%,assumingablazar interaction model. Distributions differ from the ones presented spectrumofanunbrokenpowerlawupto3TeVwithaGausian inFig.1ofAharonianetal.2008becauseoftheenergydepen- spectralindexdistributioncenteredatΓ=−2.1withσ =0.35. Γ denceoftheζ parameter. ForanimprovedrejectionofthehadronicbackgroundaRandom Forest algorithm (Breiman&Cutler2004) is used. The algo- rithm uses image information to estimate the electron likeness is shown in Fig. 2 together with previousdata of H.E.S.S. and ζ ofeachevent.Sincesomeoftheimageparametersusedtode- directmeasurements.The spectrumis welldescribedby a bro- rive the ζ parameter are energy dependent, also ζ depends on kenpowerlawdN/dE =k·(E/Eb)−Γ1 ·(1+(E/Eb)1/α)−(Γ2−Γ1)α energy.Toderiveanelectronspectrum,acutonζ ofζ > 0.6is (χ2/d.o.f. = 5.6/4, p = 0.23) with a normalization k = applied and the number of electrons is determined in indepen- (1.5±0.1)×10−4 TeV−1m−2sr−1s−1,andabreakenergyE = b dent energy bands by a fit of the distribution in ζ with contri- 0.9±0.1TeV,wherethetransitionbetweenthetwospectralin- butionsofsimulatedelectronsandprotons.Thecontributionof dices Γ = 3.0 ± 0.1 and Γ = 4.1± 0.3 occurs. The param- 1 2 heavier nuclei is sufficiently suppressed for ζ > 0.6 as not to eter α denotes the sharpness of the transition, the fit prefers a playarole.Theresultdoesnotdependontheparticularchoice sharptransition,α < 0.3.Theshadedbandindicatestheuncer- of ζ . For an extension of the spectrum towards lower ener- tainties in the flux normalization that arise from uncertainties min gies, the analysis has been modified to improve the sensitivity inthemodelingofhadronicinteractionsandintheatmospheric atlowenergies.Intheeventselectioncuts,theminimumimage model.Theuncertaintiesamounttoabout30%andarederivedin amplitudehasbeenreducedfrom200to80photoelectronstoal- thesame fashionasin theinitialpaper(Aharonianetal.2008), lowforlowerenergyevents.Inordertoguaranteegoodshower i.e.bycomparisonofthespectraderivedfromtwoindependent reconstruction, only events with a reconstructed distance from datasetstakeninsummerandautumn2004fortheeffectofat- theprojectedcorepositiononthe groundto thearraycenterof mosphericvariationsand by comparisonof the spectra derived less than100m areincluded.Additionally,onlydata takenbe- using the SIBYLL and QGSJET-II hadronic interaction model tween 2004and 2005are used. The reason is that the H.E.S.S. fortheeffectoftheuncertaintiesintheprotonsimulations.The Aharonianetal.:ProbingtheATICpeakintheCRe±spectrumwithH.E.S.S. 3 energies.However,the nominalH.E.S.S. data are in verygood 1) -r agreement with the high precision FERMI measurement up to s 1 1TeV.ThecombinedH.E.S.S.andFERMImeasurementsmake -s ∆ E+ 5% -2 m -10% ∆ E ± 15% a feature in the electron spectrum in the region of overlap of 2 bothexperimentsratherunlikely. V Beside comparing the H.E.S.S. measurement with ATIC and e G E ( d 3 dN/102 -1)sr E 1 -s -2 m ∆ E ± 15% ATIC 2 V PPB-BETS e Kobayashi G Fermi E ( H.E.S.S. d H.E.S.S. - low-energy analysis N/102 Systematic error d Systematic error - low-energy analysis 3 E Broken power-law fit 102 103 ATIC Energy (GeV) PPB-BETS Kobayashi H.E.S.S. Fig.2. The energy spectrum E3 dN/dE of cosmic-ray H.E.S.S. - low-energy analysis Background model electrons as measured by ATIC (Changetal.2008), KK signature, smeared with PPB-BETS (Toriietal.2008), emulsion chamber experi- H.E.S.S. energy resolution Sum of background model ments (Kobayashietal.2004), FERMI (Abdoetal.2009) and KK signature (the gray band shows the FERMI systematic uncertainty, the double arrow labeled with −+150%% the uncertainty of 102 103 the FERMI energy scale), and H.E.S.S. Previous H.E.S.S. Energy (GeV) data(Aharonianetal.2008)areshownasbluepoints,theresult Fig.3. The energy spectrum E3 dN/dE of cosmic-ray electrons of the low-energy analysis presented here as red points. The measuredbyH.E.S.S.andballoonexperiments.Alsoshownare shadedbandsindicate the approximatesystematic errorarising calculations for a Kaluza-Klein signature in the H.E.S.S. data from uncertainties in the modeling of hadronic interactions withamassof620GeVandafluxasdeterminedfromtheATIC and in the atmospheric model in the two analyses. The double data (dashed-dotted line), the background model fitted to low- arrow indicates the effect of an energy scale shift of 15%, the energy ATIC and high-energy H.E.S.S. data (dashed line) and approximate systematic uncertainty on the H.E.S.S. energy thesumofthetwocontributions(solidline).Theshadedregions scale.Thefitfunctionisdescribedinthetext. representtheapproximatesystematicerrorasinFig.2. band is centered aroundthe brokenpower law fit. The system- FERMI data,we also putthe Kaluza-Klein(KK)interpretation atic erroron thespectralindicesΓ , Γ is ∆Γ(syst.) . 0.3.The 1 2 suggested by Changetal.2008 to test: A model calculation of H.E.S.S. energy scale uncertainty of 15% is visualized by the howthe thereinproposedKK particlewith a massof620GeV doublearrow. andafluxapproximatedtofittheATICdatawouldappearinthe H.E.S.S. data is shownin Fig. 3. Here electronair showersare simulatedwithanenergydistributionfollowingtheenergyspec- 3. Interpretation trumofthe KK signaturepresentedbythe ATICcollaboration. The H.E.S.S. measurement yields a smooth spectrum with The simulated eventsand their energyare reconstructedby the a steepening towards higher energies, confirming the earlier H.E.S.S. data analysis. With the use of the effective collection findingsabove600GeV(Aharonianetal.2008). areaandthe “observationtime”thatthe numberofsimulations WhencomparedtoATIC,theH.E.S.S.datashownoindication corresponds to, the KK spectrum is obtained as it would be of an excess and sharp cutoff in the electron spectrum as resolved by H.E.S.S. Due to the limited energy resolution of reported by the ATIC collaboration. Since H.E.S.S. measures about15%, a sharp cutoffat the energyofthe KK mass would the electronspectrumonly above340 GeV, one cannottest the havebeensmearedout.Theresidualbackgroundspectrumtoa rising section of the ATIC-reported excess. Although different KK signal is modeled by a power law with exponentialcutoff, inshape,anoverallconsistencyoftheATICspectrumwith the whichisfittedtothelow-energyATICdata(E <300GeV)and H.E.S.S. result can be obtained within the uncertainty of the thehigh-energyH.E.S.S.data(E >700GeV).Accordingly,our H.E.S.S.energyscaleofabout15%.Thedeviationbetweenthe background spectrum deviates from the GALPROP prediction ATIC and the H.E.S.S. data is minimal at the 20% confidence asusedinChangetal.2008.Fixingthebackgroundspectrumto level (assuming Gaussian errors for the systematic uncertainty most recent observational data is preferable since the Galactic dominating the H.E.S.S. measurement) when applying an electronspectrumat highestenergiesmightcarry the signature upward shift of 10% in energy to the H.E.S.S. data. The shift of nearby electron sources (Pohl&Esposito1998) and can is well within the uncertainty of the H.E.S.S. energy scale. therefore differ substantially from the model calculation. The In this case the H.E.S.S. data overshoot the measurement of sumoftheKKsignalandelectronbackgroundspectrumabove balloon experiments above 800 GeV, but are consistent given 340 GeV is shown as solid curve in Fig. 3. The shape of the the large statistical errors from balloon experiments at these predictedspectrumforthecaseofaKKsignalisnotcompatible 4 Aharonianetal.:ProbingtheATICpeakintheCRe±spectrumwithH.E.S.S. withtheH.E.S.S.dataatthe99%confidencelevel. 11 Laboratoire d’Annecy-le-Vieux de Physique des Particules, Despitesuperiorstatistics,theH.E.S.S.datadonotruleoutthe Universite´ de Savoie, CNRS/IN2P3, 9 Chemin de Bellevue - BP existence of the ATIC-reported excess owing to a possible en- 110F-74941Annecy-le-VieuxCedex,France ergyscaleshiftinherenttothepresentedmeasurement.Whereas 12 Astroparticule et Cosmologie (APC), CNRS, Universite Paris 7 Denis Diderot, 10, rue Alice Domon et Leonie Duquet, F-75205 compatibility with FERMI and ATIC data is confirmed, the Paris Cedex 13, France UMR 7164 (CNRS, Universite´ Paris VII, KK scenario of Changetal.2008 cannot be easily reconciled CEA,ObservatoiredeParis) withthe H.E.S.S.measurement.Thespectrumratherexhibitsa 13 DublinInstituteforAdvancedStudies,5MerrionSquare,Dublin2, steepeningtowardshigherenergiesandisthereforecompatible Ireland with conventional electron populations of astrophysical origin 14 Landessternwarte, Universita¨t Heidelberg, Ko¨nigstuhl, D 69117 within the uncertainties related to the injection spectra and Heidelberg,Germany propagationeffects. 15 Laboratoire de Physique The´orique et Astroparticules, Universite´ Montpellier 2, CNRS/IN2P3, CC 70, Place Euge`ne Bataillon, F- The support of the Namibian authorities and of the 34095MontpellierCedex5,France University of Namibia in facilitating the construction and op- 16 Universita¨t Erlangen-Nu¨rnberg, Physikalisches Institut, Erwin- Rommel-Str.1,D91058Erlangen,Germany erationofH.E.S.S.isgratefullyacknowledged,asisthesupport 17 Laboratoired’AstrophysiquedeGrenoble,INSU/CNRS,Universite´ by the German Ministry for Education and Research (BMBF), JosephFourier,BP53,F-38041GrenobleCedex9,France the Max Planck Society, the French Ministry for Research, 18 Institut fu¨r Astronomie und Astrophysik, Universita¨t Tu¨bingen, the CNRS-IN2P3 and the Astroparticle Interdisciplinary Sand1,D72076Tu¨bingen,Germany Programme of the CNRS, the U.K. Science and Technology 19 LPNHE,Universite´ PierreetMarieCurieParis6,Universite´ Denis Facilities Council (STFC), the IPNP of the Charles University, Diderot Paris 7, CNRS/IN2P3, 4 Place Jussieu, F-75252, Paris thePolishMinistryofScienceandHigherEducation,theSouth Cedex5,France African Department of Science and Technology and National 20 CharlesUniversity,FacultyofMathematicsandPhysics,Instituteof Research Foundation, and by the University of Namibia. We ParticleandNuclearPhysics,VHolesˇovicˇka´ch2,18000Prague8, appreciate the excellent work of the technical support staff in CzechRepublic 21 Institut fu¨r Theoretische Physik, Lehrstuhl IV: Weltraum und Berlin,Durham,Hamburg,Heidelberg,Palaiseau,Paris,Saclay, Astrophysik, Ruhr-Universita¨t Bochum, D 44780 Bochum, and in Namibia in the constructionand operationof the equip- Germany ment. 22 UniversityofNamibia,PrivateBag13301,Windhoek,Namibia 23 ObserwatoriumAstronomiczne,UniwersytetJagiellon´ski,Krako´w, Poland References 24 NicolausCopernicusAstronomicalCenter,ul.Bartycka18,00-716 Warsaw,Poland A.A.Abdoetal.2009,PhysicalReviewLetters,102,181101 25 School of Physics & Astronomy, University of Leeds, Leeds LS2 O.Adrianietal.2009,Nature,458,607 9JT,UK F.A.Aharonian, A.M.Atoyan, H.J.Vo¨lk1995,Astron.&Astrophys.,294, 26 School of Chemistry&Physics, University of Adelaide, Adelaide L41 F.A.Aharonianetal.2008,Phys.Rev.Lett.101,261104 5005,Australia L. Breiman & A. Cutler, http://www.stat.berkeley.edu/ 27 Torun´ Centre for Astronomy, Nicolaus Copernicus University, ul. users/breiman/RandomForests/ Gagarina11,87-100Torun´,Poland J.Changetal.2008,Nature,456,362 28 Instytut Fizyki Ja¸drowej PAN, ul. Radzikowskiego 152, 31-342 P.S.Coppi&F.A.Aharonian1997,Astrophys.J.,487,L9 Krako´w,Poland J.Hall&D.Hooper2008,arXiv:0811.3362[astro-ph] 29 European Associated Laboratory for Gamma-Ray Astronomy, J.A.Hinton(H.E.S.S.Collaboration)2004,NewAstron.Rev.48,331 jointlysupportedbyCNRSandMPG T.Kobayashietal.2004,Astrophys.J.,601,340 30 Stanford University, HEPL & KIPAC, Stanford, CA 94305-4085, D.Malyshev,I.Cholis,J.Gelfand2009,arXiv:0903.1310v1[astro-ph.HE] USA M.Pohl&J.A.Esposito1998,Astrophys.J.,507,327 C.S.Shen1970,Astrophys.J.Lett.,162,L181 S.Toriietal.2008,arXiv:0809.0760[astro-ph] 1 Max-Planck-Institut fu¨r Kernphysik, P.O. Box 103980, D 69029 Heidelberg,Germany 2 Yerevan Physics Institute, 2 Alikhanian Brothers St., 375036 Yerevan,Armenia 3 Centre d’Etude Spatiale des Rayonnements, CNRS/UPS, 9 av. du ColonelRoche,BP4346,F-31029ToulouseCedex4,France 4 Universita¨t Hamburg, Institut fu¨r Experimentalphysik, Luruper Chaussee149,D22761Hamburg,Germany 5 Institutfu¨rPhysik,Humboldt-Universita¨tzuBerlin,Newtonstr.15, D12489Berlin,Germany 6 LUTH, Observatoire de Paris, CNRS, Universite´ Paris Diderot, 5 PlaceJulesJanssen,92190Meudon,France 7 IRFU/DSM/CEA, CE Saclay, F-91191 Gif-sur-Yvette, Cedex, France 8 UniversityofDurham,DepartmentofPhysics,SouthRoad,Durham DH13LE,U.K. 9 Unit for Space Physics, North-West University, Potchefstroom 2520,SouthAfrica 10 LaboratoireLeprince-Ringuet,EcolePolytechnique,CNRS/IN2P3, F-91128Palaiseau,France