ebook img

Probing Saturn's tropospheric cloud with Cassini/VIMS PDF

1.5 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Probing Saturn's tropospheric cloud with Cassini/VIMS

(cid:13)c2016. ThismanuscriptversionismadeavailableundertheCC-BY-NC-ND 4.0 licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/ 6 1 0 2 n a J 3 1 ] P E . h p - o r t s a [ 2 v 8 7 9 2 0 . 1 0 6 1 : v i X r a 1 Probing Saturn’s tropospheric cloud with Cassini/VIMS J.K.Barstowa,∗,P.G.J.Irwina,L.N.Fletchera,b,R.S.Gilesa,C.Merleta aAtmospheric,OceanicandPlanetaryPhysics,ClarendonLaboratory,UniversityofOxford,ParksRoad, Oxford,UK bDepartmentofPhysicsandAstronomy,UniversityofLeicester,UniversityRoad,Leicester,UK Abstract InitsdecadeofoperationtheCassinimissionhasallowedustolookdeepintoSaturn’s atmosphereandinvestigatetheprocessesoccurringbelowitsenshroudinghaze.Weuse VisualandInfraredMappingSpectrometer(VIMS)4.6—5.2µmdatafromearlyinthe missiontoinvestigatethelocationandpropertiesofSaturn’scloudstructurebetween 0.6and5bars.Weaveragenightsidespectrafrom2006overlatitudecirclesandmodel the spectral limb darkening using the NEMESIS radiative transfer and retrieval tool. We present our best-fit deep cloud model for latitudes −40◦ < λ < 50◦, along with retrievedabundancesforNH ,PH andAsH . WefindanincreaseinNH abundance 3 3 3 3 attheequator,acloudbaseat∼2.3barandnoevidenceforcloudparticleswithstrong absorptionfeaturesin the 4.6—5.2µm wavelengthrange, allof whichare consistent with previous work. Non-scattering cloud models assuming a composition of either NH orNH SH,withascatteringhazeoverlying,fitlimbdarkeningcurvesandspectra 3 4 atalllatitudeswell;theretrievedopticaldepthforthetropospherichazeisdecreasedin thenorthern(winter)hemisphere,implyingthatthe hazehasa photochemicalorigin. Ourabilitytotestthishypothesisbyexaminingspectraatdifferentseasonsisrestricted by the varying geometry of VIMS observations over the life of the mission, and the appearanceoftheSaturnstormtowardstheendof2010. ∗CorrespondingAuthor Emailaddress:[email protected](J.K.Barstow) PreprintsubmittedtoElsevier AcceptedJanuary2016 1. Introduction It has long been known that clouds are present on the giant planets in our solar system, but attempts to predict their location and composition using microphysical models have so far been relatively unsuccessful (e.g. Atreyaetal. 2005, describing the cloudpatternsfoundon Jupiterby the Galileo spacecraft). Cloudsare intimately linked with planetary dynamics and chemistry, so understandingtheir formation and behaviourisakeypartofstudyinganyplanetaryatmosphere. ThearrivaloftheCassinimissionatSaturnprovidedanunprecedentedopportunity tostudyitsatmosphere. Inthesubsequentdecade,Saturn’sstratosphericcomposition hasbeenmonitoredduringthechangingseasons(Fletcheretal., 2010;Sinclairetal., 2013; Fletcheretal., 2015); a spectacular hexagonalvortex has been observedat the north pole (Fletcheretal., 2008; Bainesetal., 2009); and the developmentof a dra- matic,largescalestormhasbeentracedoveraperiodofseveralmonths(Fletcher,L.N.etal., 2011;Fischeretal.,2011b;Sa´nchez-Lavegaetal.,2011;Fletcheretal.,2012;Hesmanetal., 2012;Sromovskyetal.,2013;Sayanagietal.,2013;Achterbergetal.,2014).Cassini’s suiteofinstrumentsincludestheVisualandInfraredMappingSpectrometer(VIMS), whichprovideswavelengthcoveragebetween0.3and5.1µm ataspectralresolution of ∼16 nm. Absorption bands due to methane, ammonia, phosphine and other trace gasesarepresentinthiswavelengthrange;wecanobservethereflectedsunlightsigna- turefromthedaysideatshorterwavelengths,andonthenightsidethethermalemission fromtheplanetbeginstoemergeataround4.6µm. Thisbroadwavelengthcoverage providessensitivityoveralargealtituderange,makingthisinstrumentextremelyuse- ful for atmospheric sounding; also, due to the typical size of particles (Romanetal. 2013 finds tropospheric haze particles have radii of approximately 2 µm), VIMS is highlysensitive beyond4.6µm to the spectraleffectofcloudsandhaze in the lower atmosphere(between1and8bars). Inthiswork,weuseVIMS4.6—5.2µmthermalemissionspectrafromthenight- 3 side of Saturn to investigate the tropospheric cloud and haze. Stratospheric and tro- pospherichazepropertiescanbeexploredusingreflectedlightfromthedayside(e.g. KarkoschkaandTomasko 2005; Sromovskyetal. 2013; Romanetal. 2013) but sun- lightdoesnotpenetratefarenoughintoSaturn’satmospheretoeasilyprobecloudmuch beyondthe 1-bar pressure level. On the other hand, thermalemission from the deep atmosphere is absorbed and scattered by clouds in this altitude region (Bainesetal., 2006; Choietal., 2009), as discussed by Fletcheretal. (2011a), who presented the first detailed exploration of thermal emission from Saturn using VIMS. They inves- tigated the sensitivity of the spectrum to properties of the tropospheric cloud and haze, as well as determining the latitudinal dependence of PH , NH and AsH gas 3 3 3 abundances, but found considerable solution degeneracy. We build on this previous work by using spectroscopic limb darkening within latitude circles to provide fur- therconstraintonthepropertiesofthecloudandhaze. Ground-basedobservationsby Yanamandra-Fisheretal.(2001)showedstronglatitudinalvariationin5.2µmbright- ness,attributedtovariationincloudproperties;weaimtogainabroad,globalpicture ofSaturn’stroposphericaerosolpropertiesasafunctionoflatitude. Uncertaintyastothecompositionandsize, andthereforescatteringproperties,of theKroniancloudsisamajorcontributortosolutiondegeneracyintheFletcheretal. (2011a)study. AtreyaandWong(2005)useanequilibriumcloudmodelforSaturnto predictthepresenceofNH iceandsolidNH SHcloudsinthetroposphere.TheNH 3 4 3 ice cloud is estimated to form a little above the 2 bar level, with the deeper NH SH 4 cloudformingataround5bars. Belowthislevelwemayalsoexpectwatericeclouds toform,butitisunlikelythatthesewillpersisttohighenoughaltitudesfortheVIMS measurementstobesensitivetothem(atthesewavelengths,VIMSismostlysensitive topressuresbetween1and8bar,Fletcheretal.2011a). Previous observational work on Saturn’s cloud (e.g. KarkoschkaandTomasko 2005; Fletcheretal. 2011a; Sromovskyetal. 2013; Romanetal. 2013) has indicated 4 thepresenceof bothstratosphericandtropospherichazes, with thetropospherichaze locatedinthe regiondirectlyabovewherethe NH cloudis predictedtoform. How- 3 ever, infrared observationssensitive to the deeper tropospherehave provided no evi- dence for the two distinct troposphericcloud decks(NH and NH SH) above the 10 3 4 barlevelpredictedbyAtreyaandWong(2005)(seeSromovskyetal.2013). Instead,a singleclouddeckbeneaththetropospherichaze,inthe1—5barrange,ispreferred,lo- catedinbetweenthepredictedbasepressuresforNH andNH SH.Thismayindicate 3 4 that the deep cloud is in fact a mixture of these two components, or is composed of either NH or NH SH but also contains impurities. Based on the AtreyaandWong 3 4 (2005) model predictions, we consider NH and NH SH compositions for the tro- 3 4 posperic cloud and NH for the tropospheric haze. Adopting compositions from ab 3 initio models in this way reduces the degeneracy of the problem and allows a more informativeexplorationofothercloudparameterssuchasparticlesize. 2. Dataandreduction WeusenightsideVIMScubesfromApril2006(latenorthernwinter/southernsum- mer;Table1)toinvestigatethecloudlimbdarkeningproperties.Wechoosecubesfrom this yearas Cassini’s fairly equatorialorbitat thattime allows usto investigatefrom theequatoruptothemid-latitudesofbothhemispheres. Italsofacilitatescomparison withFletcheretal.(2011a),whousedthesamecubes. Theseareoverlappingobserva- tionstakeninasinglesessionwhileSaturnrotatedunderneath,suchthatalllongitudes wereobserved. TheyareshowninFigure1, inwhichitcanbeseenthatthenorthern latitudesaremuchbrighterthanthesouthat5µm. Similar coverage was obtained during 2007, and in Section 5.5 we compare the limbdarkeningforthetwoyears. Weattemptedtoinvestigatefurtherintothemission toseeifthesetrendsbegantochangeasSaturnmovedtowardsvernalequinoxandinto northernsummer. However,ourabilityto dothiswas restrictedbythe unavailability ofsimilardataproducts. Between 2008and2010,wecouldnotlocatea sequenceof 5 Observation Date IntegrationTime(s) CM1524383985 2006-04-22 480 CM1524388848 2006-04-22 480 CM1524393612 2006-04-22 480 CM1524400806 2006-04-22 480 CM1524403247 2006-04-22 480 CM1524408018 2006-04-22 480 CM1524412815 2006-04-22 480 CM1524417617 2006-04-22 480 Table1:Listof2006datacubesusedinthecurrentresearch. VIMS images covering a wide simultaneous range of latitudes and emission angles, which is required for a study of this kind. This was due to the spacecraftmovingto an inclined orbit. Towards the end of 2010 the large Saturn storm emerged, causing great disruption to the atmosphere with effects that persisted for several Earth years, preventinganyfurtherstudy. Weinvestigatethelatitudinaldependenceofthecloudpropertiesbyexploitingthe change in emission angle along a latitude circle as viewed by VIMS. To first order, wedonotexpectsignificantlongitudinalvariabilityatthesepressurelevelsonSaturn (see Yanamandra-Fisheretal. 2001 for details of 5 µm variability observedfrom the ground),somuchofthebroadzonalvariationevidentinFigures1and2isduetolimb darkening. Toaverageoutsmall-scalelongitudinalvariationwetake all8 datacubes togetherandbinthespectrainlatitudeandemissionangle.Anydatapointswithasolar incidenceangle of less than 105◦ are rejected, to avoid contaminationfrom reflected sunlight.Weextractlatitudecirclesfrom40◦Sto50◦N,takingallpixelsatintervalsof 10◦ inlatitudewithaspreadof±3◦. By binningoverabroadlatitudebandwe hope toaverageoveranysmall-scalevariation,althoughitmeansthatwedonotresolvethe finedetailsofthelatitudevariationasreportedbyFletcheretal.(2011a). We alsoaveragespectrainthelongitudinaldirectionevery10◦ inemissionangle, to ensure that any localfeaturesare smoothedout. This resultsin an emission angle rangebetween5◦ and45◦ attheequator,and35◦ and85◦ atthehighestlatitudes. The 6 Latitude(◦) Emissionanglerange(◦) -40 ∼35—85 -30 ∼25—65 -20 ∼15—55 -10 ∼5—55 0 ∼5—45 10 ∼5—55 20 ∼15—55 30 ∼25—65 40 ∼35—85 50 ∼45—85 Table2: Emissionanglerangesforeachlatitudecircle. Therangesrefertothecentralangleofthehighest orlowest10◦rangeincludedforeachlatitudecircle. Theanglesincreasetowardshigherlatitudesbecause thesub-spacecraftpointliesclosetotheequatorforallobservations. averagelimbdarkeningat5.1µmforlatitudecirclesand20◦northandsouthareshown inFigure3. Thesmallscale variationisapparent,butitisalsoclearthattheaverage captures the basic limb darkeningtrend well. The variation in emission angle range isduetotheequatoriallocationofthespacecraftduringtheseobservations,leadingto generallyhigheremissionanglesfurtherfromtheequator. Atlowandequatoriallati- tudes,theimagesdonotextendtothelimboftheplanet,truncatingthelimbdarkening range.AnexampleofthemanipulationofasinglecubeisshowninFigure2. ThecubesweredownloadedfromtheNASAPDSarchiveandcalibratedusingthe standardISISpipeline(Fletcheretal.,2011a). ThecubesareprojectedontoaSystem IIIplanetographiclatitude/longitudegrid. Radiometricerrorsare conservativelyesti- matedtobe12%oftheaveragefluxbetween4.7and5.1µm;the12%valueisbased ontheerrorestimatesusedinFletcheretal.(2011a),butweassumeaconstanterrorof 12%oftheaverage4.7—5.1µmfluxacrossallwavelengthsandallemissionangles, whichfavoursthespectralregionswherethesignalislargest. 3. Modelatmosphereandretrieval TheSaturnmodelatmosphereisbasedontheworkofFletcheretal.(2011a). Line datasourcesareasinthispreviouspaperandGilesetal. (2015). AfterFletcheretal. 7 Figure1: MapprojecteddatacubesasusedbyFletcheretal.(2011a),whichwealsouseinthiswork. A clearhemisphericalasymmetryinthe5µmfluxisapparent,withthenorthernlatitudesappearingtobemuch brighter. ReprintedfromIcarus,214,Fletcher, L.N.etal.,Saturn’stroposphericcompositionandclouds fromCassini/VIMS4.6-5.1µmnightsidespectroscopy,510—533,Copyright(2011),withpermissionfrom Elsevier 8 Figure2:MapprojecteddatacubeCM1524383985,showntoillustrateourdataselectionprocedure.White contours show emission angles. Hatching indicates region rejected due to sunlight contamination (solar incidenceanglelessthan105◦).Paleshadedstripesshowthelatitudecirclesused. Figure3:5.1µmradianceforallpixelswithinasinglelatitudecircleat20◦northandsouth. Whilstpixel- levelvariations areapparent, theshapeofthelimbdarkening relationiswellrepresented bytheaverage. Thisencompassesbothlatitudinalandlongitudinalvariation. 9 Figure4:Jacobians(functionalderivatives)fortemperature,PH3,NH3andAsH3foratypicalcloudymodel atmosphere as used in this work. A compact tropospheric cloud is located at 2.3 bars and an extended hazebetween0.1and0.6bar. Jacobiansshowsensitivitytochangesintemperature(perK)andPH3,NH3 andAsH3abundances(perlogvolumemixingratio)atdifferentaltitudes. TheVIMSinstrumentismostly sensitive topressures between 1and8bar. Theeffect ofthecloud can beclearly seen intheincreased sensitivityabovethe2.3-barlevelinthetemperatureandPH3Jacobians,whereasthehazeistoohighupto haveasimilareffect. (2011a),weuselatitudinallyvaryingtemperatureprofilesbasedonretrievalsfromthe Composite Infrared Spectrometer (CIRS) instrument averaged over the 2004—2008 periodofobservations,extrapolatedtoanadiabatinthedeepatmosphere(Fletcheretal., 2007,2010). CIRS(FP3/FP4)operatesinthe7—16µmwavelengthrange,makingit highly sensitive to Saturn’s thermalemission from 600—100 mb and 10—1 mb and therefore an ideal probe of temperature in the upper troposphere and middle strato- sphere. The temperatureat higherpressures, closer to the regionsin which VIMS is sensitive(seeFigure4),isnotprobedbytheCIRSinstrumentandcannotbeindepen- dentlyconstrainedusingVIMSdata; however,we expectthe temperatureto bemore stable in the deeper regions of the atmosphere. We do not, therefore, expect small- scalevariabilitytoaffectourresults,especiallyasweaverageoverspectrafromeight differentdatacubes. 3.1. RetrievalAlgorithm WeusetheNEMESISradiativetransferandretrievalalgorithm(Irwinetal.,2008) tosimultaneouslyretrieveseveralatmosphericpropertiesfromtheVIMSspectra.After Fletcheretal.(2011a),we onlyvarythemodelparameterstowhichthe4.6—5.1µm 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.