ebook img

Probing Extra Dimensions with Neutrino Oscillations PDF

0.39 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Probing Extra Dimensions with Neutrino Oscillations

Probing Extra Dimensions with Neutrino Oscillations P. A. N. Machadoa, H. Nunokawab and R. Zukanovich Funchala ∗ 1 1 aInstituto de F´ısica, Universidade de S˜ao Paulo, 0 2 C. P. 66.318, 05315-970 S˜ao Paulo, Brazil n bDepartamento de F´ısica, Pontif´ıcia Universidade Cat´olica do Rio de Janeiro, a C. P. 38071, 22452-970 Rio de Janeiro, Brazil J 9 We consider a model where sterile neutrinos can propagate in a large compactified extra dimension (a) giving ] rise to Kaluza-Klein (KK) modes and the Standard Model left-handed neutrinos are confined to a 4-dimensional h spacetimebrane. TheKKmodesmixwiththestandardneutrinosmodifyingtheiroscillationpattern. Weexamine p current experiments in this framework obtaining stringent limits on a. - p e h [ 1. Introduction toDiracmassesandmixingsamongactivespecies 1 and sterile KK modes. This can be derived from v The introduction of singlet neutrino fields the action (cid:90) 6 which can propagate in extra spatial dimen- S = d4xdyıΨαΓ ∂JΨα 8 sions as well as in the usual three dimensional J 6 space may lead to naturally small Dirac neutrino (cid:90) 1 + d4xıν¯αγ ∂µνα masses,duetoavolumesuppression. Ifthosesin- L µ L . 1 glets mix with standard neutrinos they may have (cid:90) 10 an impact on neutrino oscillations, even if the + d4xλαβHν¯LαΨβR(x,0)+h.c., sizeofthelargestextradimensionissmallerthan 1 where Γ ,J = 0,..,4 are the 5-dimensional : 2×10−4m(thecurrentlimitfromCavendish-type J v Dirac matrices, that after dimensional reduction experiments which test the Newton Law). i and electroweak symmetry breaking gives rise to X the effective neutrino mass Lagrangian ar 2. Theoretical Framework L = (cid:88)mD (cid:34)ν(0)ν(0)+√2 (cid:88)∞ ν(0)ν(N)(cid:35) HereweconsiderthemodeldiscussedinRef.[1] eff αβ αL βR αL βR where the 3 standard model (SM) left-handed α,β N=1 neutrinos νLα and the other SM fields, including + (cid:88) (cid:88)∞ N ν(N)ν(N)+h.c., the Higgs (H), are confined to propagate in a a αL αR α N=1 4-dimensional spacetime, while 3 families of SM wheretheGreekindicesα,β =e,µ,τ, thecap- singlet fermions (Ψα) can propagate in a higher ital Roman index N = 1,...,∞, mD is a Dirac dimensionalspacetimewithatleasttwocompact- αβ ified extra dimensions, one of these (y) compact- mass matrix, ν(0) , ν(N) and ν(N) are the linear αR αR αL ified on a circle of radius a, much larger than the combinations of the singlet fermions that couple size of the others so that we can in practice use a to the SM neutrinos ν(0). αL 5-dimensional treatment. Inthiscontextonecancomputetheactiveneu- The singlet fermions have Yukawa couplings trino transition probabilities λ withtheHiggsandtheSMneutrinosleading αβ P(ν(0) →ν(0);L)= ∗CToanlckagSivpeenccahtiNulOlaW, O20tr1a0n,tNo,euIttarilny,oSOespctiellmatbieorn4W-1o1r,ks2h0o1p0., (cid:12)(cid:12)(cid:12)(cid:12)(cid:88) (cid:88)∞ UααiUβ∗kWβ i(j0N)∗Wk(j0N)exp(cid:32)iλ2(jEN)a22L(cid:33)(cid:12)(cid:12)(cid:12)(cid:12)2 E-mail: [email protected] i,j,kN=0 1 2 where U and W are the mixing matrices for ac- LEDinVacuum tive and KK modes, respectively. Here λ(N) is 1.0 j 735km a dimensionless eigenvalue of the evolution equa- 0.8 tion [1] which depends on the j-th neutrino mass (mj), hence on the mass hierarchy, L is the base- (cid:174)Ν(cid:76)Μ 0.6 Standard linTeoanildlusEtriastethwehnaetuitsrienxopeecnteerdgyw.e plot in Fig. 1 (cid:72)ΝPΜ 0.4 LED: ma0(cid:61)(cid:61)0510(cid:45)7m the survival probabilities for ν → ν and ν¯ → 0.2 Normalhierarchy µ µ e ν¯ as a function of E. We show the behavior for Invertedhierarchy e 0.0 the normal and inverted mass hierarchy assum- 1 2 3 4 5 ingthelightestneutrinotobemassless(m =0). E(cid:72)GeV(cid:76) 0 The effect of this large extra dimension (LED) 1.0 depends on the product m a. We observe that j 180km in the ν →ν channel the effect of LED is basi- 0.8 µ µ callythesamefornormal(NH)andinverted(IH) hierarchies, since in this case all the amplitudes Ν(cid:76)e 0.6 (cid:174) involved are rather large. On the other hand, for (cid:72)ΝPe 0.4 ν¯ →ν¯ theeffectissmallerforNHasinthiscase e e 0.2 the dominant m a term is suppressed by θ . j 13 0.0 2 3 4 5 6 7 8 3. Results E(cid:72)MeV(cid:76) As we can observe in Fig. 1 the main effect of Figure 1. In the top (bottom) panel we show the LED is a shift in the oscillation maximum with survival probability for ν (ν¯ ) as a function of µ e a decrease in the survival probability due to os- the neutrino energy for L=735 km (180 km) for cillations to KK modes. This makes experiments a = 0 (no LED, black curve) and a = 5×10−7 such as KamLAND and MINOS, which are cur- m for normal hierarchy (dashed blue curve) and rentlythebestexperimentstomeasure∆m2 and inverted hierarchy (dotted red curve). (cid:12) |∆m2 |, respectively, also the best experiments atm to test for LED. generate neutrinos with m = 0.2 eV. We have 0 We have used the recent MINOS [2] and Kam- verified that the inclusion of LED in the fit of LAND [3] results and reproduced their allowed the standard atmospheric oscillation parameters regions for the standard oscillation parameters. doesnotmodifyverymuchtheregionintheplane For this and the LED study we have modified sin22θ ×|∆m2 | allowed by MINOS data. In 23 atm GLoBES[4]accordingtoourpreviousanalysisof fact the best fit point as well as the χ2 remain min these experiments in [5] and [6]. the same as in the case without LED. In Fig. 2, we present the excluded region in KamLAND data provide, for hierarchical neu- the plane m × a, by MINOS, KamLAND and trinos with m → 0, a competitive limit only for 0 0 their combined data at 90 and 99% CL (2 dof). IH, in this case one gets a < 8.5(9.8)×10−7 m When finding these regions all standard oscilla- at 90 (99)% CL. For degenerate neutrinos with tion parameters where considered free. To ac- m = 0.2 eV one also gets from KamLAND 0 count for our previous knowledge of their values a < 2.0(2.3)×10−7 m at 90 (99)% CL. The in- [7],wehaveaddedGaussianpriorstotheχ2func- clusion of LED in the fit of the standard solar tion. As expected the limits provided by MINOS oscillation parameters here enlarges the region (ν →ν ) are basically the same for NH and IH. in the plane tan2θ × ∆m2 allowed by Kam- µ µ 12 (cid:12) From their data we obtain a < 7.3(9.7)×10−7 LAND data. The best fit point changes from m in the hierarchical case for m → 0 and ∆m2 = 7.6×10−5 eV2 and tan2θ = 0.62 to 0 (cid:12) 12 a < 1.2(1.6)×10−7 m at 90 (99)% CL for de- ∆m2 =8.6×10−5 eV2 andtan2θ =0.42,how- (cid:12) 12 3 4. Conclusions 100 MINOSΝ (cid:174)Ν Μ Μ We have investigated the effect of LED in neu- excluded trinooscillationdataderivinglimitsonthelargest extra dimension a provided by the most recent 10(cid:45)1 data from MINOS and KamLAND experiments. (cid:76)V For hierarchical neutrinos with m0 → 0, MINOS e (cid:72) and KamLAND constrain a < 6.8(9.5) × 10−7 m0 m for NH and a < 8.5(9.8) × 10−7 m at 90 10(cid:45)2 (99)% CL for IH. For degenerate neutrinos with m = 0.2 eV their combined data constrain a < 0 2.1(2.3)×10−7 m at 90 (99)% CL. 10(cid:45)3 We can estimate that the future Double KamLAND CHOOZexperimentwillbeabletoimprovethese limits by a factor 2 for the IH and by a factor excluded 1.5forthedegeneratecase. UnfortunatelyNOνA and T2K cannot improve MINOS limits. See [8] 10(cid:45)1 for any detail. (cid:76)V RZF and HN thank Profs. Fogli and Lisi for e (cid:72) m0 thecordialinvitationtoparticipateofNOW2010. 10(cid:45)2 This work has been supported by FAPESP, FAPERJ and CNPq Brazilian funding agencies. REFERENCES 10(cid:45)3 MINOS(cid:43)KamLAND 1. H. Davoudiasl, P. Langacker and M. Perel- stein, Phys. Rev. D 65, (2002) 105015 excluded [arXiv:hep-ph/0201128]. 2. P. Vahle [MINOS Collaboration], these pro- 10(cid:45)1 ceedings. (cid:76)eV 3. S. Abe et al. [KamLAND Collaboration], (cid:72) m0 Phys. Rev. Lett. 100, (2008) 221803 10(cid:45)2 [arXiv:0801.4589 [hep-ex]]. Normalhierarchy 4. P. Huber et al., Comput. Phys. Commun. 99(cid:37),90(cid:37)C.L. 177, (2007) 432 [arXiv:hep-ph/0701187], Invertedhierarchy 99(cid:37),90(cid:37)C.L. URL http://www.mpi-hd.mpg.de/˜ globes. 10(cid:45)3 5. H. Minakata, H. Nunokawa, W. J. C. Teves 10(cid:45)8 10(cid:45)7 10(cid:45)6 and R. Zukanovich Funchal, Nucl. Phys. a(cid:72)m(cid:76) Proc. Suppl. 145, (2005) 45 [arXiv:hep- Figure2. Excludedregionintheplanem ×aby 0 ph/0501250]. KamLAND(upperpanel),MINOS(centerpanel) 6. J. Kopp, P. A. N. Machado and S. J. and combined (lower panel). Parke, Phys. Rev. D 82 (2010) 113002 [arXiv:1009.0014 [hep-ph]]. 7. M. C. Gonzalez-Garcia, M. Maltoni and J. Salvado, JHEP 1004 (2010) 056 ever, the χ2 /dof remains the same. [arXiv:1001.4524 [hep-ph]]. min When one combines both experiments the hi- 8. P. A. N. Machado, H. Nunokawa and R. erarchicallimitsimprovebutthedegeneratelimit Zukanovich Funchal [arXiv:1101.0003 [hep- remains practically the one given by MINOS. ph]].

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.