ebook img

Probing Cosmic Dark Matter and Dark Energy with Weak Gravitational Lensing Statistics PDF

144 Pages·2016·3.91 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Probing Cosmic Dark Matter and Dark Energy with Weak Gravitational Lensing Statistics

Springer Theses Recognizing Outstanding Ph.D. Research Masato Shirasaki Probing Cosmic Dark Matter and Dark Energy with Weak Gravitational Lensing Statistics Springer Theses Recognizing Outstanding Ph.D. Research Aims and Scope The series “Springer Theses” brings together a selection of the very best Ph.D. theses from around the world and across the physical sciences. Nominated and endorsed by two recognized specialists, each published volume has been selected foritsscientificexcellenceandthehighimpactofitscontentsforthepertinentfield of research. For greater accessibility to non-specialists, the published versions includeanextendedintroduction,aswellasaforewordbythestudent’ssupervisor explainingthespecialrelevanceoftheworkforthefield.Asawhole,theserieswill provide a valuable resource both for newcomers to the research fields described, and for other scientists seeking detailed background information on special questions. Finally, it provides an accredited documentation of the valuable contributions made by today’s younger generation of scientists. Theses are accepted into the series by invited nomination only and must fulfill all of the following criteria (cid:129) They must be written in good English. (cid:129) ThetopicshouldfallwithintheconfinesofChemistry,Physics,EarthSciences, Engineeringandrelatedinterdisciplinary fields such asMaterials,Nanoscience, Chemical Engineering, Complex Systems and Biophysics. (cid:129) The work reported in the thesis must represent a significant scientific advance. (cid:129) Ifthethesisincludespreviouslypublishedmaterial,permissiontoreproducethis must be gained from the respective copyright holder. (cid:129) They must have been examined and passed during the 12 months prior to nomination. (cid:129) Each thesis should include a foreword by the supervisor outlining the signifi- cance of its content. (cid:129) The theses should have a clearly defined structure including an introduction accessible to scientists not expert in that particular field. More information about this series at http://www.springer.com/series/8790 Masato Shirasaki Probing Cosmic Dark Matter and Dark Energy with Weak Gravitational Lensing Statistics Doctoral Thesis accepted by The University of Tokyo, Tokyo, Japan 123 Author Supervisor Dr. Masato Shirasaki Prof. NaokiYoshida TheUniversity of Tokyo TheUniversity of Tokyo Tokyo Tokyo Japan Japan ISSN 2190-5053 ISSN 2190-5061 (electronic) SpringerTheses ISBN978-981-287-795-6 ISBN978-981-287-796-3 (eBook) DOI 10.1007/978-981-287-796-3 LibraryofCongressControlNumber:2015950028 SpringerSingaporeHeidelbergNewYorkDordrechtLondon ©SpringerScience+BusinessMediaSingapore2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerScience+BusinessMediaSingaporePteLtd.ispartofSpringerScience+BusinessMedia (www.springer.com) ’ Supervisor s Foreword Observations of the spatial distribution of galaxies suggest that our universe is approximatelyhomogeneousandisotropicatverylargelengthscales.Galaxies are not distributed randomly, however. There are patterns and prominent “structures” that extend over millions of light years. The origin of such a large-scale structure oftheuniversehasattractedmuchattentionnotonlyfromprofessionalastronomers but also from the general public. The standard theory of cosmic structure formation posits that the structure is formed through nonlinear gravitational growth of tiny density fluctuations gener- ated in the very early universe. A broad range of astronomical observations have provided a consistent picture overall with the above notion, but there remain important questions regarding the source of gravity that enabled the formation ofthelarge-scalestructure.Thenatureoftheso-calleddarkmatter,whichamounts tonearly80%ofthetotalmattercontentintheuniverse,holdsakeytounderstand the evolution of the universe and the formation of the rich structure we see today. Gravitationallensingprovidesadirectphysicalmethodtoprobethedistribution of matter in the universe. Collective information of distorted images of distant galaxiescanbeutilizedtomapoutthedistributionofinterveningmatter.Recently, wide-area surveys by large ground-based telescopes have begun providing an enormousamountofdatafromwhichwecanstudyindetailthematterdistribution in and around galaxies and galaxy clusters. Dr.Shirasakiexplorednovelmethodsforrevealingthenatureofdarkmatterand the evolution of the universe using primarily gravitational lensing observations. Alargesetofnumericalsimulationsofcosmicstructureformationwasalsousedto derive crucial statistical quantities for precision cosmology. The contents of this thesisaretimelyinthatthemainresultscanbereadilyappliedtothedatafromthe v vi Supervisor’sForeword ongoing large observational program Subaru Hyper Suprime-Cam survey. A promising example of cross-correlation analysis is also presented. Altogether, this doctoral thesis lays out the foundation for weak lensing cosmology. Tokyo, Japan Naoki Yoshida May 2015 Acknowledgments Iamgratefultomysupervisor,ProfessorNaokiYoshida,forhiscontinuoussupport and encouragement. Through fruitful discussions with him, I have learned many things in cosmology, astrophysics, data analysis, and computational skills. He originally led me to the interesting research area observational cosmology. I also would like to express special thanks to my collaborators Takashi Hamana and Shunsaku Horiuchi. If it had not been for their kind support and our useful dis- cussions, I could not have completed this thesis. I would like to thank Masahiro Takada, Chiaki Hikage, Masayuki Tanaka, Kazuhiro Nakazawa, and Zoltan Haiman for useful and helpful discussions. Masanori Sato kindly providedus with their ray-tracing simulations data. I am thankful to all of members at the Kavli Institute for Physics and Mathematics of the Universe (Kavli IPMU), The UniversityofTokyoTheoreticalAstrophysicsGroup(UTAP),andResearchCenter for the Early Universe (RESCEU). My graduate research was supported by Research Fellowships of the Japan Society for the Promotion of Science (JSPS) for Young Scientists. Numerical computationspresentedinthisthesiswereinpartcarriedoutonthegeneralpurpose PC farm at the Center for Computational Astrophysics, CfCA, of the National Astronomical Observatory of Japan. The analysis presented in this thesis is based onobservationsobtainedwith MegaPrime/MegaCam,ajointprojectofCFHT and CEA/IRFU, at the Canada–France–Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences del’UniversoftheCentreNationaldelaRechercheScientifique(CNRS) of France, and the University of Hawaii. The research used the facilities of the Canadian Astronomy Data Centre operated by the National Research Council of Canada with the support of the Canadian Space Agency. CFHTLenS data pro- cessing was made possible and thanks to significant computing support from the NSERC Research Tools and Instruments grant program. Finally, I wish to thank my father, mother, and sister and all my friends who have supported me. vii Contents 1 Introduction to Observational Cosmology . . . . . . . . . . . . . . . . . . . 1 1.1 Cosmic Acceleration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Type Ia Supernovae. . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Baryon Acoustic Oscillations. . . . . . . . . . . . . . . . . . . . . 2 1.2 Astrophysical Evidence of Dark Matter. . . . . . . . . . . . . . . . . . . 3 1.2.1 Rotation Curves of Galaxies . . . . . . . . . . . . . . . . . . . . . 4 1.2.2 Mass Estimate of Clusters of Galaxies . . . . . . . . . . . . . . 4 1.2.3 Global Energy Budget of Universe. . . . . . . . . . . . . . . . . 5 1.3 Cosmology with Gravitational Lensing. . . . . . . . . . . . . . . . . . . 6 1.4 Objective of This Thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Structure Formation in the Universe. . . . . . . . . . . . . . . . . . . . . . . 15 2.1 The Standard Cosmological Model. . . . . . . . . . . . . . . . . . . . . . 15 2.1.1 Friedmann Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.2 Cosmological Redshift and Angular-Diameter Distance. . . 18 2.2 Growth of Matter Density. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.1 Evolution of Density Fluctuations . . . . . . . . . . . . . . . . . 20 2.2.2 Linear Perturbation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.3 Non-linear Perturbation. . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3 Statistics of Matter Density Perturbation . . . . . . . . . . . . . . . . . . 25 2.3.1 Two Point Statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.2 Mass Function and Halo Bias . . . . . . . . . . . . . . . . . . . . 27 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3 Weak Gravitational Lensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1 Basic Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2 Observable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3 Statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.1 Two Point Correlation Function. . . . . . . . . . . . . . . . . . . 36 3.3.2 Lensing Mass Reconstruction . . . . . . . . . . . . . . . . . . . . 41 3.3.3 Minkowski Functionals. . . . . . . . . . . . . . . . . . . . . . . . . 42 ix x Contents 3.4 Numerical Simulation of Weak Lensing . . . . . . . . . . . . . . . . . . 46 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4 Weak Lensing Morphological Analysis . . . . . . . . . . . . . . . . . . . . . 53 4.1 Impact of Masked Region. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.1.1 Estimation of Lensing MFs from Cosmic Shear Data. . . . 54 4.1.2 Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.1.3 Bias Due to Masking Effect . . . . . . . . . . . . . . . . . . . . . 58 4.1.4 Impact of Masking on Cosmological Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.1.5 Application to Subaru Suprime-Cam Data. . . . . . . . . . . . 61 4.2 Statistical and Systematic Error of Minkowski Functionals . . . . . 63 4.2.1 Mock Weak Lensing Catalogs. . . . . . . . . . . . . . . . . . . . 63 4.2.2 Realistic Forecast of Cosmological Constraints . . . . . . . . 66 4.2.3 Possible Systematics. . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.3 Application to CFHTLenS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.3.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.3.2 Likelihood Analysis of Lensing MFs . . . . . . . . . . . . . . . 76 4.3.3 Breaking Degeneracies. . . . . . . . . . . . . . . . . . . . . . . . . 77 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5 Cross Correlation with Dark Matter Annihilation Sources. . . . . . . 85 5.1 Dark Matter Annihilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.1.1 Relic Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.1.2 Gamma-Ray Intensity. . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2 Extragalactic Gamma-Ray Background. . . . . . . . . . . . . . . . . . . 89 5.2.1 Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.3 Cross Correlation of Extragalactic Gamma-Ray Background and Cosmic Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.3.1 Theoretical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.3.2 Cross-Correlation Estimator and Covariance . . . . . . . . . . 100 5.4 Application to Real Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.4.1 Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.4.2 Result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.5 Constraint and Forecast. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.5.1 DM Annihilation Constraint . . . . . . . . . . . . . . . . . . . . . 107 5.5.2 Future Forecast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6 Summary and Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.1 Lensing Minkowski Functionals. . . . . . . . . . . . . . . . . . . . . . . . 115 6.1.1 Subaru Suprime-Cam. . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.1.2 Canada-France-Hawaii Telescope Lensing Survey . . . . . . 116 6.1.3 Future Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Description:
In this book the applicability and the utility of two statistical approaches for understanding dark energy and dark matter with gravitational lensing measurement are introduced.For cosmological constraints on the nature of dark energy, morphological statistics called Minkowski functionals (MFs) to e
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.