ebook img

Probing Anomalous Longitudinal Fluctuations of the Interacting Bose Gas via Bose-Einstein Condensation of Magnons PDF

0.14 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Probing Anomalous Longitudinal Fluctuations of the Interacting Bose Gas via Bose-Einstein Condensation of Magnons

Probing Anomalous Longitudinal Fluctuations of the Interacting Bose Gas via Bose-Einstein Condensation of Magnons Andreas Kreisel, Nils Hasselmann, and Peter Kopietz Institut fu¨r Theoretische Physik, Universit¨at Frankfurt, Max-von-Laue Strasse 1, 60438 Frankfurt, Germany 7 (Dated: October26, 2006) 0 0 Theemergence of afinitestaggered magnetization in quantumHeisenberg antiferromagnets sub- 2 ject to a uniform magnetic field can be viewed as Bose-Einstein condensation of magnons. Using n non-perturbativeresults for the infrared behavior of the interacting Bose gas, we present exact re- a sults for the staggered spin-spin correlation functions of quantum antiferromagnets in a magnetic J field at zero temperature. In particular, we show that in dimensions 1 < D ≤ 3 the longitudinal 9 dynamicstructurefactorSk(q,ω)describingstaggeredspinfluctuationsinthedirectionofthestag- geredmagnetizationexhibitsacriticalcontinuumwhoseweightcanbecontrolledexperimentallyby ] varyingthemagnetic field. h c PACSnumbers: 75.10.Jm,05.30.Jp,03.75.Kk,75.40.Gb e m - Because magnons in ordered Heisenberg magnets are vergences originating from the gapless dispersion of the t a bosonic quasi-particles, it is natural to expect that un- Goldstone mode, giving rise to non-analytic behavior of t dercertainconditionsthesesystemscanbeusedtostudy some boson correlation functions [7, 8, 9]. Yet, in all s . general properties of interacting Bose gases, such as the physical observables of the Bose gas these divergences t a phenomenon of Bose-Einstein condensation (BEC). In cancel, so that they seem to be little more than a math- m fact, the renewed interest in BEC in recent years has ematical curiosity. Here, we point out that, in contrast - also led to considerable activity in the field of magnon to the Bose gas, in MBEC the anomalous behavior aris- d BEC [1, 2], which we abbreviate MBEC below. ing from the divergencescan be directly observedexper- n o Experimentally, MBEC has been observed in two dif- imentally. We shall exploitrecent renormalizationgroup c results [7] to obtain the infrared behavior of the stag- ferent classes of systems. The first are spin-singlet sys- [ tems [1] such as TlCuCl or Haldane gap spin chains, gered spin-spin correlation functions of QAFs in a uni- 3 3 where MBEC corresponds to the collapse of the singlet- form magnetic field at zero temperature. In particular, v we shall show that in dimensions 1 < D 3 the lon- tripletgapatacriticalmagneticfieldandthe emergence 5 gitudinal part S (q,ω) of the dynamic stru≤cture factor 7 oflong-rangemagneticorderforlargerfields. Thesecond k (corresponding to spin-fluctuations parallel to the stag- 5 class of systems, which we shall consider in this work, gered magnetization) exhibits a critical continuum for 0 are easy-plane quantum antiferromagnets (QAFs) such 1 as Cs CuCl subject to a magnetic field h perpendicular small wave-vectors q and frequencies ω, which can be 2 4 | | 6 measured via neutron scattering. to the easy plane [2]. If h exceeds some critical field h , 0 c WestartfromtheHamiltonianofthespin-S QAFona the ground state is a saturated ferromagnet. For h<h / c at the U(1)-symmetry of the Hamiltonian is spontaneously D-dimensionalhypercubiclatticewithN sitesandlattice spacing a in a uniform magnetic field in z-direction, m broken and antiferromagnetic long-range order emerges. - At zero temperature, the boson density vanishes at the 1 d phase transition so that many-body interactions are not H = 2 JijSi·Sj −h Siz , (1) n relevant at the zero temperature quantum critical point. Xij Xi o c However,thefinitetemperaturetransitionbelongstothe where the sums are over all sites of the lattice, and Si : same universality class as BEC in the interacting Bose are spin operators with S2 = S(S + 1). We assume v i i gas. One advantage of studying BEC in magnetic sys- nearest neighbor coupling, i.e., Jij = J > 0 if i and j X tems is that the magnetic analogon hc−h of the chemi- are nearest neighbors, and Jij = 0 otherwise. For suf- r calpotentialcaneasilybecontrolledexperimentally. An- ficiently large h, the ground state of Eq. (1) is a sat- a other advantage, which has attracted little attention to urated ferromagnet with magnetization parallel to the date, is that in MBEC the phase of the condensate has field. Toobtainthelow-lyingmagnonexcitations,weex- a direct physical interpretation as the orientation of the press the spin operators in terms of canonical boson op- staggered magnetization within the easy plane. erators b using the Holstein-Primakoff transformation, i The concept of MBEC has been formulated theoret- Si− = √2Sb†i[1 − ni/(2S)]1/2 = (Si+)†, Siz = S − ni, ically many years ago [3, 4, 5, 6], where the focus was where n = b†b . Expanding the square roots and ne- i i i mainly on the nature of the quantum phase transition. glecting terms involving six and more boson operators However, even away from the critical point, perturba- we obtain H E + H + H . The constant part is 0 2 4 tiontheory for the interacting Bosegasis plaguedby di- E = N[J˜S2≈/2 hS], where J˜ = J˜ with J˜ = 0 0 0 k=0 k − 2 jeik·rjJij. The quadratic and the quartic contribu- y h tions to the Hamiltonian are P x S H = J [n +n b†b b†b ]+h n ,(2) H24 = −41X2ijXiJjij[i2jninij −bj†i−nibij −j −b†jnjibii]. Xi i (3) FIG.1:(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)A(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:1)((cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:1)C(cid:0)(cid:1)(cid:0)(cid:1)o(cid:0)(cid:1)lo(cid:0)(cid:1)θ(cid:0)(cid:1)r(cid:0)(cid:1)(cid:0)(cid:1)o(cid:0)(cid:1)n(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)Bl(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)in(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)e(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1))(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)M(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)S(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)p(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)θs(cid:0)(cid:1)i(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)n(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)c(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)A(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)o(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)n(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)fi(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)g(cid:0)(cid:1)(cid:0)(cid:1)u(cid:0)(cid:1)r(cid:0)(cid:1)a(cid:0)(cid:1)t(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)i(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)Bo(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)n(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)i(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)n(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)t(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)h(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:1)e(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)g(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)z(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)r(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)o(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)u(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)ndstate Anticipating antiferromagnetic symmetry breaking, it of a QAF in a uniform magnetic field for h < h . The local c is convenient to define the Fourier transform in the moments hS i are represented by dashed arrows. We choose i reduced (antiferromagnetic) Brillouin zone with two the coordinate system such that the magnetic field h points branches of magnon operators bkσ labelled by momenta inthez-directionandthestaggeredmagnetizationMs points k in the reduced zone and σ = , in the y-direction. The sublattices are labelled A and B. ± b =N−1/2 e−ik·rib +σ e−ik·rib . (4) kσ i i valid also for larger canting angles. Of course, if θ is i∈A i∈B (cid:2)X X (cid:3) not small it is better to quantize the spin operators in Herei A/B denotesasummationoverthesitesofonly a suitably defined tilted basis [10, 11]. For simplicity, ∈ one of the sublattices A or B. The quadratic magnon we shall focus here on the regime θ 1 where our ap- Hamiltonianisthendiagonal,H2 = kσ(ǫkσ−µ)b†kσbkσ, proach based on the Holstein-Primak≪off transformation with magnon dispersion ǫ = (J˜ + σJ˜ )S and µ = withquantizationaxisalongthedirectionofthemagnetic kσ 0P k h h, where h =2J˜S. For small wave-vectorsǫ fieldis thus quantitativelyaccuratefor largeS. Alterna- c c 0 k,− − ≈ k2/(2m), with effective mass m = (2JSa2)−1, while the tively, we could represent the spin operators in terms of symmetric mode ǫ is gapped, ǫ = h , so that projectedbosons[4, 5,12]whichaccountforall1/S cor- k,+ k=0,+ c ǫ µ = h. Note that the gapless mode σ = 1 rections at small θ. However, in the spirit of Ref. [13], k=0,+ − − describes staggered spin fluctuations. wetakethe finite correctionsdue tohigherordersin1/S Since inthis workwe areinterestedinthe infraredbe- implicitly into account by expressing our final result in havior of correlation functions at energy scales smaller terms of the true spin-wave velocity c and the spin sus- than h, we shall ignore the gapped mode. To derive ceptibility χ, which can be obtained from experiments. the interaction part of the Hamiltonian of the gapless Toleadingorderin1/S,theclassicaltiltangleθiseas- magnons, we substitute Eq. (4) into Eq. (3) and neglect ily obtained by substituting ψˆ = (2π)Dδ(k)ψ +∆ψˆ k 0 k all terms involving the operators bk,+. Defining the field in Eq. (5) and demanding that the coefficient of the operatorsψˆk =V1/2bk,−,whereV =NaD isthe volume term linear in ∆ψˆk vanishes. This yields the well known of the system, we obtain for N , [14] relation ψ 2U = µ. To translate this into a →∞ | 0| 0 condition for θ, we note from Fig. 1 that for large S k2 H = E + ( µ)ψˆ†ψˆ the tilt angle is related to the staggered magnetization 0 Zk 2m − k k Ms =V−1 iζihSiyiviaθ ≈Ms/s. Heres=S/aDisthe + 12ZqZkZk′Uqψˆk†+qψˆk†′−qψˆk′ψˆk , (5) sfoprini-d∈enAsiatyPndofζith=e−sa1tuforartied∈mBa.gSnientcicesMtas2te=, a2nsd|ψζ0i|2=to1 leading order in spin-wave theory, we obtain for large S where = dDk/(2π)D and the effective interaction is k Ucuqto=ffΘaRn(Λd0χR−=|q|()2χJ−0˜1a.DH)−e1reisΛt0he≈leaa−d1inigs alanrguel-tSrarveisouleltt θ2 ≈Ms2/s2 ≈2ρ0/s=2(1−h/hc), (6) 0 0 for the uniform transverse susceptibility in x-direction, where ρ0 = ψ0 2 is the condensate density. Eq. (6) | | which is perpendicular to the staggered magnetization agrees with the small-θ expansion of the classical re- and to the magnetic field. This completes our mapping sult cosθ = h/hc [15]. To obtain the magnon spectrum of the spin system onto an interacting Bose gas. for large S, we neglect all terms higher than quadratic For µ > 0 the field operator ψˆk=0 acquires a vac- in the ∆ψˆk. After a Bogoliubov transformation, one uum expectation value, corresponding to the emergence finds that for h < hc the magnon spectrum is deter- of long-range antiferromagnetic order. The spin config- mined by ǫ2 = k2 2 +c2k2 which for small k yields k 2m 0 uration in the ground state is then canted, as shown in ǫk = c0 k + (k3), with the magnetic field dependent | | O (cid:0) (cid:1) Fig.1. Oneshouldkeepinmind,however,thatEq.(5)is spin-wave velocity c0 = µ/m=2√DJSaθ. accurateonly for smallθ, since otherwisethe Bosegas is Wenowfocusonthe spin-waveinteractions,whichare no longer dilute such that a three-body interactionmust relevantinD 3. Thespubstitutionψˆk =(2π)Dδ(k)ψ0+ ≤ be added. However, the qualitative behavior of corre- ∆ψˆ generates various terms cubic and quartic in ∆ψˆ k k lation functions is largely determined by symmetry [7], which are rather tedious to work with. A perturbative so that our results derivedbelow are expected to remain treatment of these terms is plagued by infrared diver- 3 gences. However, Ward-identities associated with the are within Gaussian approximation given by U(1)-symmetryoftheHamiltonian(5)canbeusedtoob- χ−1 tain the infrared behavior of some correlation functions hΠKΠK′i0 = δK,−K′ω2+0c2k2 , (10a) withoutresortingtoperturbationtheory. Aspointedout 0 ω in Ref. [7], the constraints imposed on the correlation hΠKΦK′i0 = δK,−K′ω2+c2k2 , (10b) functions by the Ward identities are more transparent if 0 oinngeteoxptrraensssevserψˆskeainndtelromngsitoufdtiwnoalrfleualctfiuealdtiso,ncso.rRreescpeonntdly- hΦKΦK′i0 = δK,−K′ωχ20+c20ck22k2 , (10c) 0 we haveproposeda similarparameterizationofthe spin- wave expansion in QAFs [11, 16], which amounts to ex- where δK,−K′ = (2π)D+1δ(ω + ω′)δ(k + k′). It turns outthattheGaussianapproximationisqualitativelycor- pressingthefieldoperatorψˆ intermsoftwocanonically conjugatehermitianoperatokrsΠˆk andΦˆk asfollows[17], rfoerctthfoermthixeetdracnosrvreerlasetioconrfruenlacttiioonnfuΠnKctΦioKn′hΠ, wKhΠeKre′i.a.n.d h i h i denotes the full thermal average. Using the results of ψˆ =ρ1/2Πˆ +i(4ρ )−1/2Φˆ . (7) Ref.[7],we obtainfor the true infraredbehaviorofthese k 0 k 0 k correlationfunctions χ−1 Bothfieldsrepresentstaggeredspinfluctuationsinthedi- hΠKΠK′i = δK,−K′ω2+c2k2 , (11a) rectionsperpendiculartothe magneticfield,whereΠˆ is k Z ω transverse and Φˆk longitudinal with respect to the stag- hΠKΦK′i = δK,−K′ω2+kc2k2 , (11b) gered magnetization. More precisely, in the coordinate where c is the renormalized spin-wave velocity, χ = system shown in Fig. 1 we have for S , →∞ M2ρ/(2smc2ρ ) = χ Z /Z2 is the renormalized trans- s 0 0 ρ c versesusceptibility,andρ andρarethetruecondensate 0 1 M Πˆk ≈ Ms i ζie−ik·riSix , Φˆk ≈ ss i ζie−ik·riSiy . ddeuncseidtythaneddtimoteanlsdioennlseitsys.fFacotrocrosnZveρn=ienρc/eρw0,eZhacv=einc/trco0-, X X (8) and Z = (mc2/ρ)dρ /dµ, all of which approach unity k 0 This equation becomes quantitatively accurate even for in the classical limit S . We emphasize that in di- → ∞ finite S in the dilute limit h h which can be shown mensions D 3 some Feynman diagrams contributing c → ≤ using projected boson operators [12]. The condensed to the abovecorrelationfunctions areinfrareddivergent. phase corresponds to antiferromagnetic order, Φˆk = However, the Ward identities [7] guarantee that all di- h i (2π)Dδ(k)φ , where φ = M2/s for large S. Note that vergencescancel,so that the only difference between the 0 0 s the total density of the Bose gas corresponds in the un- exact results (11a, 11b) and the corresponding approx- derlying spin system to ρ=s V−1 Sz , which van- imate expressions (10a, 10b) are finite renormalization − ih ii ishes for h h and satisfies ρ s if h is only slightly factors. The exact results (11a, 11b) depend only on c ≥ ≪ P smaller than h . Corrections to Eq. (8) would be asso- parameters which can be expressed in terms of thermo- c ciated with terms which are of linear or higher order in dynamic derivatives. the boson density and become negligible for h h . The important point is now that the Ward identities c → donotimposesimilarconstraintsonthelongitudinalcor- The infrared behavior of correlation functions is most conveniently derived within a functional integral ap- relationfunction ΦKΦK′ ,whichinD 3isdominated h i ≤ by a non-analytictermarisingfromthe re-summationof proach [7, 14]. The system is then described in terms the leading infrared divergences. Using the results de- of an action S[Π,Φ], which is a functional of c-number rived in Ref. [7] we obtain fields depending on imaginary time τ. Formally, these ω2 fields can be obtained from the field operators by sub- hΦKΦK′i = δK,−K′χ −Zk2ω2+c2k2 stituting Πˆ Π (τ) and Φˆ (2π)Dδ(k)φ +Φ (τ). (cid:20) Introducingkt→he Fkourier tranksfo→rms in freque0ncy spkace, +K (mc)3 ln[ω2(/mc2c+)2k2] , D =3 , (12) ΠK = dτeiωτΠk(τ) and ΦK = dτeiωτΦk(τ), the D+1 Zρ3ρ0 ( 3−2D[ωc22 +k2]D2−3 , D <3 # Gaussian part of the action can be written as R R whereK =21−Dπ−D/2/Γ(D/2). Thenon-analyticcon- D tribution to the longitudinal correlation function of the 1 S [Π,Φ] = χ c2k2Π Π +χ−1Φ Φ interacting Bose gas has first been discussed by Weich- 0 2 0 0 −K K 0 −K K ZKh man [8], and later in Ref. [9]. The field φK has thus a +ω(Π Φ Φ Π ) . (9) finite anomalous dimension and its effective action can- −K K −K K − not be approximated by a Gaussian. This reflects the i generalbehaviorofsystemswithbrokencontinuoussym- Here K = (k,iω) is a collective label for momenta and metries where Goldstone modes lead to anomalous lon- frequencies,and = dω . Thecorrelationfunctions gitudinal fluctuations [18, 19, 20, 21, 22]. Note that the K 2π k R R R 4 magnetic field dependent microscopic momentum scale czynski, Phys. Rev. Lett. 88, 137203 (2002); M. Mat- mc is for large S approximately mc √Dθ/a. Using sumoto, B. Normand, T. M. Rice, and M. Sigrist, Phys. a generalized Ginzburg criterium [7],≈we find that the Rev. Lett. 89, 077203 (2002); T. M. Rice, Science 298, 760 (2002); Ch. Ru¨egg, N. Cavadini, A. Furrer, H. U. non-analytic corrections in Eq. (12) become important 1 Gu¨del, K. Kr¨amer, H. Mutka, A. Wildes, K. Habicht, for k . kG, where kG mc[(mc)D/ρ0]3−D for D < 3, and P. Vorderwisch, Nature 423, 62 (2003); V. S. Zapf, | | ≈ and kG mcexp[ ρ0/(mc)3] for D =3. D. Zocco, B. R. Hansen, M. Jaime, N. Harrison, C. ≈ − Eventhoughwe havederivedEqs.(11a, 11b)and(12) D. Batista, M. Kenzelmann, C. Niedermayer, A. Lac- onlyforsmallcantingangleθ,theyremainvalidevenfor erda, and A.Paduan-Filho, Phys. Rev.Lett. 96, 077204 moderate values of θ, as long as three-body interactions (2006). [2] T. Radu, H. Wilhelm, V. Yushankhai, D. Kovrizhin, R. are negligible. Using Eqs. (8,12), we find for the longi- Coldea, Z. Tylczynski, T. Lu¨hmann, and F. Steglich, tudinal staggered structure factor for 1 < D ≤ 3 and Phys. Rev.Lett. 95, 127202 (2005). 0<ω/c.kG, [3] T. Matsubara and H. Matsuda, Prog. Theor. Phys. 16, 569 (1956). S (k,ω) = χs2 Zk2ckδ(ω ck) [4] E. G. Batyev and L. S. Braginskii, Zh. Eksp. Teor. Fiz. k Ms2" 2 | | − | | [5] E87.,G1.36B1at(y1e9v84Z)h[.SoEvk.sPp.hyTse.oJr.EFTiPz.6809,,738018(1(1998845)]).[Sov. (mc)3 Θ(ω ck) Phys.JETP62,173(1985)];S.Gluzman,Z.Phys.B90, + CD Zρ3ρ0 (ω2/c2−−k|2)|3−2D #, (13) [6] I3.13Affl(1e9c9k3,).Phys. Rev. B 41, 6697 (1990); ibid. 43, 3215 (1991). where C = K [π(3 D)/2]−1sin[π(3 D)/2]. In D D+1 [7] C. Castellani, C. DiCastro, F. Pistolesi, and G. C. Stri- − − particular, C3 = K4 = (8π2)−1 and C2 = π−3. Eq. (13) nati, Phys. Rev. Lett. 78, 1612 (1997); F. Pistolesi, C. is the main result of this work. For small k . kG Castellani, C. Di Castro, and G. C. Strinati, Phys. Rev. the critical continuum represented by the las|t |term in B 69, 024513 (2004). Eq. (13) carries most of the spectral weight: Denot- [8] P. B. Weichman,Phys. Rev.B 38, 8739 (1988). [9] S.Giorgini, L.Pitaevskii, andS.Stringari,Phys.Rev.B ing by I the contribution from the continuum part in c 46, 6374 (1992). Eq.(13)totheenergyintegratedspectralweight,andby [10] Based onaself-consistent treatmentofasubsetof inter- I the corresponding contribution due to the δ-function, δ actiondiagrams,acontinuuminthedynamicalstructure we find Ic/Iδ (kG/k)ln(kG/k) for D = 2 and factor was predicted at large magnetic fields and large ∝ | | | | Ic/Iδ (kG/k)(mc)3/ρ0 for D = 3. In both cases wavevectorsinM.E.ZhitomirskyandA.L.Chernyshev, the con∝tinuum| p|art dominates for k . k . However, Phys. Rev.Lett. 82, 4536 (1999). They did however not G in three dimensions k θexp[ S/|(6|√3θ)] is exponen- include thequartic magnon interaction. G tially small for h h ∝so that−the region k . k is [11] N. Hasselmann, F. Schu¨tz, I. Spremo, and P. Kopietz, c G ≈ | | cond-mat/0511706, (C. R.Chim., in press). difficult to resolve experimentally. On the other hand, [12] The usual hard core boson approach [4] for S = 1/2 in D = 2 we have kG ≈ 4√2θ/Sa so that in this case can be generalized for arbitrary spin by setting Si+ ≈ the critical continuum should be accessible via neutron (2S)1/2[1+(K−1)b†b ]b , with K = (1−1/2S)1/2, see scattering at scales k .kG. Ref. [5]. To leadingiorideir in 1/S, this reproduces the | | In summary, we have shown that in dimensions 1 < interactionterminEq.(3).Inthelow-densitylimitθ≪1 D 3 the longitudinal dynamic structure factor of this projected boson approach becomes exact. QAF≤ssubjecttoauniformmagneticfieldexhibitsafield- [13] S.Chakravarty,B.I.Halperin,andD.Nelson,Phys.Rev. Lett. 60, 1057 (1988); Phys. Rev.B 39, 2344 (1989). dependent critical continuum as described by Eq. (13) [14] V.N.Popov, Functional Integrals and Collective Excita- whichiscloselyrelatedtotheanomalouslylargelongitu- tions, (Cambridge UniversityPress, Cambridge, 1987). dinalfluctuationsinthecondensedphaseoftheinteract- [15] M.E.ZhitomirskyandT.Nikuni,Phys.Rev.B57,5013 ing Bose gas. While in the latter case these fluctuations (1998). cannot be directly measured, the magnetic realizationof [16] N.HasselmannandP.Kopietz,Europhys.Lett.74,1067 BEC offers a direct experimental access to these fluctu- (2006). ations. Both in D = 2 and D = 3 the critical contin- [17] ThenormalizationinEq.(7)ischosentoidentifyΠˆkwith uumdominates the energyintegratedlongitudinalstruc- thetransversefieldofthenon-linearσ-model[11,13,16]. ture factor if k is smaller than the Ginzburg scale k . The conjugate field Φˆk is then fixed by the canonical Atleastintwo|-d|imensionalQAFsthecriticalcontinuuGm commutation relation [Πˆk,Φˆk′]=i(2π)Dδ(k+k′). [18] A.Z.Patashinskii andV.L.Pokrovskii, Zh.Eksp.Teor. should be observable in neutron scattering experiments. Fiz. 64, 1445 (1973) [Sov. Phys. JETP 37, 733 (1973)]. This work was supported by the DFG via FOR 412. [19] S. Chakravarty,Phys.Rev. Lett. 66, 481 (1991). [20] S.Giorgini,L.P.Pitaevskii,andS.Stringari,Phys.Rev. Lett. 80, 5040 (1999). [21] S. Sachdev,Phys. Rev.B 59, 14054 (1999). [1] T. Nikuni, M. Oshikawa, A. Oosawa, and H. Tanaka, [22] W. Zwerger, Phys. Rev.Lett. 92, 027203 (2004). Phys.Rev.Lett. 84,5868 (2000); R.Coldea, D.A.Ten- nant, K. Habicht, P. Smeibidl, C. Woltzers, and Z. Tyl-

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.