ebook img

Probability with Applications in Engineering, Science, and Technology PDF

664 Pages·2017·13.127 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Probability with Applications in Engineering, Science, and Technology

Springer Texts in Statistics Matthew A. Carlton Jay L. Devore Probability with Applications in Engineering, Science, and Technology Second Edition Springer Texts in Statistics SeriesEditors R.DeVeaux S.E.Fienberg I.Olkin Moreinformationabout thisseries athttp://www.springer.com/series/417 Matthew A. Carlton (cid:129) Jay L. Devore Probability with Applications in Engineering, Science, and Technology Second Edition Editors MatthewA.Carlton JayL.Devore DepartmentofStatistics DepartmentofStatistics CaliforniaPolytechnicStateUniversity CaliforniaPolytechnicStateUniversity SanLuisObispo,CA,USA SanLuisObispo,CA,USA Additionalmaterialtothisbookcanbedownloadedfromhttp://extras.springer.com. ISSN1431-875X ISSN2197-4136 (eBook) SpringerTextsinStatistics ISBN978-3-319-52400-9 ISBN978-3-319-52401-6(eBook) DOI10.1007/978-3-319-52401-6 LibraryofCongressControlNumber:2017932278 #SpringerInternationalPublishingAG2014, 2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeor part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway, andtransmissionorinformationstorageandretrieval,electronicadaptation,computersoftware, orbysimilarordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthis publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesare exemptfromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationin thisbookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernor the authors or the editors give a warranty, express or implied, with respect to the material containedhereinorforanyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Purpose Ourobjectiveistoprovideapost-calculusintroductiontothesubjectofprobabilitythat • Hasmathematicalintegrityandcontainssomeunderlyingtheory • Showsstudentsabroadrangeofapplicationsinvolvingrealproblemscenarios • Iscurrentinitsselectionoftopics • Isaccessibletoawideaudience,includingmathematicsandstatisticsmajors(yes,thereareafew of the latter, and their numbers are growing), prospective engineers and scientists, and business andsocialsciencemajorsinterestedinthequantitativeaspectsoftheirdisciplines • Illustrates the importance of software for carrying out simulations when answers to questions cannotbeobtainedanalytically A number of currently available probability texts are heavily oriented toward a rigorous mathe- maticaldevelopmentofprobability,withmuchemphasisontheorems,proofs,andderivations.Even when applied material is included, the scenarios are often contrived (many examples and exercises involving dice, coins, cards, and widgets). So in our exposition we have tried to achieve a balance betweenmathematicalfoundationsandtheapplicationofprobabilitytoreal-worldproblems.Itisour beliefthatthetheoryofprobabilitybyitselfisoftennotenoughofa“hook”togetstudentsinterested in further work in the subject. We think that the best way to persuade students to continue their probabilisticeducationbeyondafirstcourseistoshowthemhowthemethodologyisusedinpractice. Let’s first seduce them (figuratively speaking, of course) with intriguing problem scenarios and applications.Opportunitiesforexposuretomathematicalrigorwillfollowinduecourse. Content ThebookbeginswithanIntroduction,whichcontainsourattempttoaddressthefollowingquestion: “Why study probability?” Here we are trying to tantalize students with a number of intriguing problem scenarios—coupon collection, birth and death processes, reliability engineering, finance, queuingmodels,andvariousconundrumsinvolvingthemisinterpretationofprobabilisticinformation (e.g., Benford’s Law and the detection of fraudulent data, birthday problems, and the likelihood of having a rare disease when a diagnostic test result is positive). Most of the exposition contains references torecentlypublishedresults.It isnotnecessaryoreven desirable tocover verymuchof thismotivationalmaterialintheclassroom.Instead,wesuggestthatinstructorsasktheirstudentsto readselectivelyoutsideclass(abitofpleasurereadingattheverybeginningofthetermshouldnotbe v vi Preface anundueburden!).Subsequentchaptersmakelittlereferencetotheexamplesherein,andseparating outour“peptalk”shouldmakeiteasiertocoveraslittleormuchasaninstructordeemsappropriate. Chapter 1 covers sample spaces and events, the axioms of probability and derived properties, counting,conditionalprobability,andindependence.Discreterandomvariablesanddistributionsare the subject of Chap.2, and Chap.3 introduces continuous random variablesand their distributions. Joint probability distributions are the focus of Chap. 4, including marginal and conditional distributions, expectation of a function of several variables, correlation, modes of convergence, the CentralLimitTheorem,reliabilityofsystemsofcomponents,thedistributionofalinearcombination, andsomeresultsonorderstatistics.Thesefourchaptersconstitutethecoreofthebook. The remaining chapters build on the core in various ways. Chapter 5 introduces methods of statistical inference—point estimation, the use of statistical intervals, and hypothesis testing. In Chap.6wecoverbasicpropertiesofdiscrete-timeMarkovchains. Various otherrandomprocesses and their properties, including stationarity and its consequences, Poisson processes, Brownian motion, and continuous-time Markov chains, are discussed in Chap. 7. The final chapter presents someelementaryconceptsandmethodsintheareaofsignalprocessing. Onefeatureofourbookthatdistinguishesitfromthecompetitionisasectionattheendofalmost everychapterthatconsiderssimulationmethodsforgettingapproximateanswerswhenexactresults aredifficultorimpossibletoobtain.BoththeRsoftwareandMatlabareemployedforthispurpose. Another noteworthy aspect of the book is the inclusion of roughly 1100 exercises; the first four core chapters together have about 700 exercises. There are numerous exercises at the end of each section and also supplementary exercises at the end of every chapter. Probability at its heart is concernedwithproblemsolving.Astudentcannothopetoreallylearnthematerialsimplybysitting passively in the classroom and listening to the instructor. He/she must get actively involved in working problems. To this end, we have provided a wide spectrum of exercises, ranging from straightforwardtoreasonablychallenging.Itshouldbeeasyforaninstructortofindenoughproblems atvariouslevelsofdifficultytokeepstudentsgainfullyoccupied. Mathematical Level Thechallengeforstudentsatthislevelshouldbetomastertheconceptsandmethodstoasufficient degree that problems encountered inthereal worldcan besolved.Mostofourexercises areofthis type,andrelativelyfewaskforproofsorderivations.Consequently,themathematicalprerequisites anddemandsarereasonablymodest.Mathematicalsophisticationandquantitativereasoningability are,ofcourse,crucialtotheenterprise.Univariatecalculusisemployedinthecontinuousdistribution calculations of Chap. 3 as well as in obtaining maximum likelihood estimators in the inference chapter. But even here the functions we ask students to work with are straightforward—generally polynomials, exponentials, and logs. A stronger background is required for the signal processing material at the end of the book (we have included a brief mathematical appendix as a refresher for relevantproperties).MultivariatecalculusisusedinthesectiononjointdistributionsinChap.4and thereafterappearsratherrarely.ExposuretomatrixalgebraisneededfortheMarkovchainmaterial. Recommended Coverage Our book contains enough material for a year-long course, though we expect that many instructors will use it for a single term (one semester or one quarter). To give a sense of what might be reasonable,wenowbrieflydescribethreecoursesatourhomeinstitution,CalPolyStateUniversity (inSanLuisObispo,CA),forwhichthisbookisappropriate.Syllabiwithexpandedcourseoutlines areavailablefordownloadonthebook’swebsiteatSpringer.com. Preface vii Title: Introductionto IntroductiontoProbability ProbabilityandRandomProcesses Probabilityand Models forEngineers Simulation Main Statisticsandmath Statisticsandmathmajors Electricalandcomputer audience: majors engineeringmajors Prerequisites: Univariatecalculus, Univariatecalculus,computer Multivariatecalculus,continuous- computer programming,matrixalgebra timesignalsincl.Fourieranalysis programming Sections 1.1–1.6 1.1–1.6 1.1–1.5 covered: 2.1–2.6,2.8 2.1–2.5,2.8 2.1–2.5 3.1–3.4,3.8 3.1–3.4,3.8 3.1–3.5 4.1–4.3,4.5 4.1–4.3,4.5,4.8 4.1–4.3,4.5,4.7 6.1–6.5 7.1–7.3,7.5–7.6 7.5 8.1–8.2 Bothofthefirsttwocoursesplaceheavyemphasisoncomputersimulationofrandomphenomena; instructors typically have students work in R. As is evident from the lists of sections covered, IntroductiontoProbabilityModelstakestheearliermaterialatafasterpaceinordertoleaveafew weeksattheendforMarkovchainsandsomeotherapplications(typicallyreliabilitytheoryandabit aboutPoissonprocesses).Inourexperience,thecomputerprogrammingprerequisiteisessentialfor students’successinthosetwocourses. The third course listed, Probability and Random Processes for Engineers, is our university’s versionofthetraditional“randomsignalsandnoise”courseofferedbymanyelectricalengineering departments. Again, the first four chapters are covered at a somewhat accelerated pace, with about 30–40%ofthecoursededicatedtotimeandfrequencyrepresentationsofrandomprocesses(Chaps.7 and 8).Simulation of random phenomena is notemphasized inour course, though we make liberal useofMatlabfordemonstrations. Weareabletocoverasmuchmaterialasindicatedontheforegoingsyllabiwiththeaidofanot- so-secretweapon:weprepareandrequirethatstudentsbringtoclassacoursebooklet.Thebooklet containsmostoftheexampleswepresentaswellassomesurroundingmaterial.Atypicalexample beginswithaproblemstatementandthenposesseveralquestions(asintheexercisesinthisbook). Aftereachposedquestionthereissomeblankspacesothestudentcaneithertakenotesasthesolution isdevelopedinclassorelseworktheproblemonhis/herownifaskedtodoso.Becausestudentshave abooklet,theinstructordoesnothavetowriteasmuchontheboardaswouldotherwisebenecessary andthestudentdoesnothavetodoasmuchwritingtotakenotes.Boththeinstructorandthestudents benefit. Wealsoliketothinkthatstudentscanbeaskedtoreadanoccasionalsubsectionorevensectionon theirownandthenworkexercisestodemonstrateunderstanding,sothatnoteverythingneedstobe presented in class. For example, we have found that assigning a take-home exam problem that requiresreadingabouttheWeibulland/orlognormaldistributionsisagoodwaytoacquaintstudents withthem.Butinstructorsshouldalwayskeepinmindthatthereisneverenoughtimeinacourseof anydurationtoteachstudentsallthatwe’dlikethemtoknow.Hopefullystudentswilllikethebook enough to keep it after the course is over and use it as a basis for extending their knowledge of probability! viii Preface Acknowledgments We gratefully acknowledge the plentiful feedback provided by the following reviewers: Allan Gut, MuradTaqqu,MarkSchillingandRobertHeiny. WeverymuchappreciatetheproductionservicesprovidedbythefolksatSPiTechnologies.Our productioneditors,Sasireka.KandMariaDaviddidafirst-ratejobofmovingthebookthroughthe productionprocess andwere always promptandconsiderateincommunicationswithus.Thanksto our copyeditors at SPi for employing a light touch and not taking us too much to task for our occasionalgrammaticalandstylisticlapses.ThestaffatSpringerU.S.hasbeenespeciallysupportive duringboththedevelopmentalandproductionstages;specialkudosgotoMichaelPennandRebekah McClure. A Final Thought Itisourhopethatstudentscompletingacoursetaughtfromthisbookwillfeelaspassionatelyabout thesubjectofprobabilityaswestilldoaftersomanyyearsoflivingwithit.Onlyteacherscanreally appreciate how gratifying it is to hear from a student after he/she has completed a course that the experiencehadapositiveimpactandmaybeevenaffectedacareerchoice. SanLuisObispo,CA MatthewA.Carlton SanLuisObispo,CA JayL.Devore Contents 1 Probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 SampleSpacesandEvents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 TheSampleSpaceofanExperiment. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.3 SomeRelationsfromSetTheory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.4 Exercises:Section1.1(1–12). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Axioms,Interpretations,andPropertiesofProbability. .. . . . . . . . . . . . . .. . . . . 7 1.2.1 InterpretingProbability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.2 MoreProbabilityProperties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.3 DeterminingProbabilitiesSystematically. . . . . . . . . . . . . . . . . . . . . . . 13 1.2.4 EquallyLikelyOutcomes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.2.5 Exercises:Section1.2(13–30). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3 CountingMethods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.3.1 TheFundamentalCountingPrinciple. . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.3.2 TreeDiagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.3.3 Permutations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.3.4 Combinations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.3.5 Exercises:Section1.3(31–49). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.4 ConditionalProbability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.4.1 TheDefinitionofConditionalProbability. . . . . . . . . . . . . . . . . . . . . . . 30 1.4.2 TheMultiplicationRuleforP(A \ B). . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.4.3 TheLawofTotalProbabilityandBayes’Theorem. . . . . . . . . . . . . . . . 34 1.4.4 Exercises:Section1.4(50–78). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 1.5 Independence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 1.5.1 P(A \ B)WhenEventsAreIndependent. . . . . . . . . . . . . . . . . . . . . . . . 44 1.5.2 IndependenceofMorethanTwoEvents. . . . . . . . . . . . . . . . . . . . . . . . 45 1.5.3 Exercises:Section1.5(79–100). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 1.6 SimulationofRandomEvents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 1.6.1 TheBackboneofSimulation:RandomNumberGenerators. . . . . . . . . . 51 1.6.2 PrecisionofSimulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 1.6.3 Exercises:Section1.6(101–120). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 1.7 SupplementaryExercises(121–150). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2 DiscreteRandomVariablesandProbabilityDistributions. . . . . . . . . . . . . . . . . . . . 67 2.1 RandomVariables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.1.1 TwoTypesofRandomVariables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 2.1.2 Exercises:Section2.1(1–10). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 ix x Contents 2.2 ProbabilityDistributionsforDiscreteRandomVariables. .. . . . .. . . . .. . . . .. . 71 2.2.1 AParameterofaProbabilityDistribution. . . . . . . . . . . . . . . . . . . . . . . 74 2.2.2 TheCumulativeDistributionFunction.. . . .. . .. . . .. . . .. . . .. . . .. . 75 2.2.3 AnotherViewofProbabilityMassFunctions. . . . . . . . . . . . . . . . . . . . . 78 2.2.4 Exercises:Section2.2(11–28). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 2.3 ExpectedValueandStandardDeviation.. . . . . . . . .. . . . . . . . .. . . . . . . . .. . . 83 2.3.1 TheExpectedValueofX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 2.3.2 TheExpectedValueofaFunction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 2.3.3 TheVarianceandStandardDeviationofX. . . . . . . . . . . . . . . . . . . . . . 88 2.3.4 PropertiesofVariance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 2.3.5 Exercises:Section2.3(29–48). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 2.4 TheBinomialDistribution. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . 95 2.4.1 TheBinomialRandomVariableandDistribution. . . . . . . . . . . . . . . . . . 97 2.4.2 ComputingBinomialProbabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 2.4.3 TheMeanandVarianceofaBinomialRandomVariable. . . . . . . . . . . . 101 2.4.4 BinomialCalculationswithSoftware. . . . . . . . . . . . . . . . . . . . . . . . . . 102 2.4.5 Exercises:Section2.4(49–74). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 2.5 ThePoissonDistribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 2.5.1 ThePoissonDistributionasaLimit. . . . . . . . . . . . . . . . . . . . . . . . . . . 107 2.5.2 TheMeanandVarianceofaPoissonRandomVariable. . . . . . . . . . . . . 110 2.5.3 ThePoissonProcess. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 2.5.4 PoissonCalculationswithSoftware. . . . . . . .. . . . . . . . . . . . . . . . . . . . 111 2.5.5 Exercises:Section2.5(75–89). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 2.6 OtherDiscreteDistributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 2.6.1 TheHypergeometricDistribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 2.6.2 TheNegativeBinomialandGeometricDistributions. . . . . . . . . . . . . . . 117 2.6.3 AlternativeDefinitionoftheNegativeBinomialDistribution. . . . . . . . . 120 2.6.4 Exercises:Section2.6(90–106). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 2.7 MomentsandMomentGeneratingFunctions. . . . . . . . . . . . . . . . . . . . . . . . . . . 123 2.7.1 TheMomentGeneratingFunction. . . . . . . . . .. . . . . . . . . . . . . .. . . . . 125 2.7.2 ObtainingMomentsfromtheMGF. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 2.7.3 MGFsofCommonDistributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 2.7.4 Exercises:Section2.7(107–128). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 2.8 SimulationofDiscreteRandomVariables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 2.8.1 SimulationsImplementedinRandMatlab. . . . . . . . . . . . . . . . . . . . . . 134 2.8.2 SimulationMean,StandardDeviation,andPrecision. . . . . . . . . . . . . . . 135 2.8.3 Exercises:Section2.8(129–141). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 2.9 SupplementaryExercises(142–170). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 3 ContinuousRandomVariablesandProbabilityDistributions. . . . . . . . . . . . . . . . . 147 3.1 ProbabilityDensityFunctionsandCumulativeDistributionFunctions. . . . . . . . . 147 3.1.1 ProbabilityDistributionsforContinuousVariables.. . . . . . .. . . . . . .. . 148 3.1.2 TheCumulativeDistributionFunction.. . . .. . .. . . .. . . .. . . .. . . .. . 152 3.1.3 UsingF(x)toComputeProbabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . 154 3.1.4 Obtainingf(x)fromF(x). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 3.1.5 PercentilesofaContinuousDistribution. . . . . . . . . . . . . . . . . . . . . . . . 156 3.1.6 Exercises:Section3.1(1–18). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 3.2 ExpectedValuesandMomentGeneratingFunctions. . . . . . . . . . . . . . . .. . . . . . 162 3.2.1 ExpectedValues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 3.2.2 MomentGeneratingFunctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 3.2.3 Exercises:Section3.2(19–38). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.