ebook img

Probability Theory And Statistical Inference: Empirical Modeling With Observational Data PDF

788 Pages·2019·33.66 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Probability Theory And Statistical Inference: Empirical Modeling With Observational Data

Probability Theory and Statistical Inference Doubt over the trustworthiness of published empirical results is not unwarranted and is often a result of statistical misspecification: invalid probabilistic assump- tionsimposedondata.Nowinitssecondedition,thisbestsellingtextbookoffers acomprehensivecourseinempiricalresearchmethods,teachingtheprobabilistic andstatisticalfoundationsthatenablethespecificationandvalidationofstatistical models, providing the basis for an informed implementation of statistical proce- duretosecurethetrustworthinessofevidence.Eachchapterhasbeenthoroughly updated,accountingfordevelopmentsinthefieldandtheauthor’sownresearch. The comprehensive scope of the textbook has been expanded by the addition of a new chapter on the Linear Regression and related statistical models. This new edition is now more accessible to students of disciplines beyond economics and includesmorepedagogicalfeatures,withanincreasednumberofexamplesaswell asreviewquestionsandexercisesattheendofeachchapter. ARIS SPANOS is Wilson E. Schmidt Professor of Economics at Virginia Poly- technicInstitute andStateUniversity.HeistheauthorofStatisticalFoundations of Econometric Modelling (Cambridge, 1986) and, with D. G. Mayo, Error and Inference: Recent Exchanges on Experimental Reasoning, Reliability, and the ObjectivityandRationalityofScience(Cambridge,2010). Probability Theory and Statistical Inference Empirical Modeling with Observational Data Second Edition Aris Spanos Virginia Tech (Virginia Polytechnic Institute & State University) UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107185142 DOI:10.1017/9781316882825 (cid:2)c ArisSpanos2019 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished1999 Thirdprinting2007 Secondedition2019 PrintedintheUnitedKingdombyTJInternationalLtd.PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloging-in-PublicationData Names:Spanos,Aris,1952–author. Title:Probabilitytheoryandstatisticalinference:empiricalmodelling withobservationaldata/ArisSpanos(VirginiaCollegeofTechnology). Description:Cambridge;NewYork,NY:CambridgeUniversityPress,2019.| Includesbibliographicalreferencesandindex. Identifiers:LCCN2019008498(print)|LCCN2019016182(ebook)|ISBN9781107185142|ISBN Subjects:LCSH:Probabilities–Textbooks.|Mathematical statistics–Textbooks. Classification:LCCQA273(ebook)|LCCQA273.S68752019(print)|DDC519.5–dc23 LCrecordavailableathttps://lccn.loc.gov/2019008498 ISBN978-1-107-18514-2Hardback ISBN978-1-316-63637-4Paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. TomygrandchildrenNicholas,Jason,andEvie, mydaughtersStella,Marina,andAlexia,andmy wifeEviefortheirunconditionalloveandsupport Contents PrefacetotheSecondEdition pagexix 1 AnIntroductiontoEmpiricalModeling 1 1.1 Introduction 1 1.2 StochasticPhenomena:APreliminaryView 3 1.2.1 ChanceRegularityPatterns 3 1.2.2 FromChanceRegularitiestoProbabilities 7 1.2.3 ChanceRegularityPatternsandReal-WorldPhenomena 11 1.3 ChanceRegularitiesandStatisticalModels 12 1.4 ObservedDataandEmpiricalModeling 14 1.4.1 Experimentalvs.ObservationalData 14 1.4.2 ObservedDataandtheNatureofaStatisticalModel 15 1.4.3 MeasurementScalesandData 16 1.4.4 MeasurementScaleandStatisticalAnalysis 18 1.4.5 Cross-Sectionvs.TimeSeries,isthattheQuestion? 20 1.4.6 LimitationsofEconomicData 22 1.5 StatisticalAdequacy 23 ∗ 1.6 Statisticalvs.SubstantiveInformation 25 1.7 LookingAhead 27 1.8 QuestionsandExercises 28 2 ProbabilityTheoryasaModelingFramework 30 2.1 Introduction 30 2.1.1 PrimaryObjective 30 2.1.2 Descriptivevs.InferentialStatistics 30 2.2 SimpleStatisticalModel:APreliminaryView 32 2.2.1 TheBasicStructureofaSimpleStatisticalModel 33 2.2.2 TheNotionofaRandomVariable:ANaiveView 34 2.2.3 DensityFunctions 35 2.2.4 ARandomSample:APreliminaryView 36 2.3 ProbabilityTheory:AnIntroduction 40 2.3.1 OutliningtheEarlyMilestonesofProbabilityTheory 40 2.3.2 ProbabilityTheory:AModelingPerspective 42 2.4 ASimpleGenericStochasticMechanism 42 2.4.1 TheNotionofaRandomExperiment 42 2.4.2 ABird’s-EyeViewoftheUnfoldingStory 44 vii viii Contents 2.5 FormalizingCondition[a]:TheOutcomesSet 45 2.5.1 TheConceptofaSetinSetTheory 45 2.5.2 TheOutcomesSet 45 2.5.3 SpecialTypesofSets 46 2.6 FormalizingCondition[b]:EventsandProbabilities 48 2.6.1 Set-TheoreticOperations 48 2.6.2 Eventsvs.Outcomes 51 2.6.3 EventSpace 51 2.6.4 ADigression:WhatisaFunction? 58 2.6.5 TheMathematicalNotionofProbability 59 2.6.6 ProbabilitySpace(S,(cid:4),P(.)) 63 2.6.7 MathematicalDeduction 64 2.7 ConditionalProbabilityandIndependence 65 2.7.1 ConditionalProbabilityanditsProperties 65 2.7.2 TheConceptofIndependenceAmongEvents 69 2.8 FormalizingCondition[c]:SamplingSpace 70 2.8.1 TheConceptofRandomTrials 70 2.8.2 TheConceptofaStatisticalSpace 72 2.8.3 TheUnfoldingStoryAhead 74 2.9 QuestionsandExercises 75 3 TheConceptofaProbabilityModel 78 3.1 Introduction 78 3.1.1 TheStorySoFarandWhatComesNext 78 3.2 TheConceptofaRandomVariable 79 3.2.1 TheCaseofaFiniteOutcomesSet:S={s ,s ,...,s } 80 1 2 n 3.2.2 KeyFeaturesofaRandomVariable 81 3.2.3 The Case of a Countable Outcomes Set: S={s ,s ,...,s ,...} 85 1 2 n 3.3 TheGeneralConceptofaRandomVariable 86 3.3.1 TheCaseofanUncountableOutcomesSetS 86 3.4 CumulativeDistributionandDensityFunctions 89 3.4.1 TheConceptofaCumulativeDistributionFunction 89 3.4.2 TheConceptofaDensityFunction 91 3.5 FromaProbabilitySpacetoaProbabilityModel 95 3.5.1 ParametersandMoments 97 3.5.2 FunctionsofaRandomVariable 97 3.5.3 NumericalCharacteristicsofRandomVariables 99 3.5.4 HigherMoments 102 3.5.5 TheProblemofMoments* 110 3.5.6 OtherNumericalCharacteristics 112 3.6 Summary 118 3.7 QuestionsandExercises 119 Appendix3.A:UnivariateDistributions 121

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.