ebook img

Probability: Theory and Examples, Fourth Edition PDF

440 Pages·2010·2.24 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Probability: Theory and Examples, Fourth Edition

This page intentionally left blank Probability TheoryandExamples FourthEdition Thisbookisanintroductiontoprobabilitytheorycoveringlawsoflarge numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatmentconcentratingontheresultsthatarethemostusefulforappli- cations.Itsphilosophyisthatthebestwaytolearnprobabilityistoseeit inaction,sothereare200examplesand450problems. Rick Durrett received his Ph.D. in operations research from Stanford Universityin1976.AfternineyearsatUCLAandtwenty-fiveatCornell University,hemovedtoDukeUniversityin2010,whereheisaprofessor ofmathematics.Heistheauthorof8booksandmorethan170journal articles on a wide variety of topics, and he has supervised more than 40Ph.D.students.HeisamemberoftheNationalAcademyofScience and the American Academy of Arts and Sciences and a Fellow of the InstituteofMathematicalStatistics. CAMBRIDGE SERIES IN STATISTICAL AND PROBABILISTIC MATHEMATICS EditorialBoard: Z.Ghahramani,DepartmentofEngineering,UniversityofCambridge R.Gill,DepartmentofMathematics,UtrechtUniversity F.Kelly,StatisticsLaboratory,UniversityofCambridge B.D.Ripley,DepartmentofStatistics,UniversityofOxford S.Ross,DepartmentofIndustrial&SystemsEngineering,Universityof SouthernCalifornia M.Stein,DepartmentofStatistics,UniversityofChicago This series of high-quality upper-division textbooks and expository monographs covers all aspects of stochastic applicable mathematics. The topics range from pure and applied statistics to probability theory, operations research, optimization, and mathematical pro- gramming. The books contain clear presentations of new developments in the field and alsoofthestateoftheartinclassicalmethods.Whileemphasizingrigoroustreatmentof theoreticalmethods,thebooksalsocontainapplicationsanddiscussionsofnewtechniques madepossiblebyadvancesincomputationalpractice. AlreadyPublished 1. BootstrapMethodsandTheirApplication,byA.C.DavisonandD.V.Hinkley 2. MarkovChains,byJ.Norris 3. AsymptoticStatistics,byA.W.vanderVaart 4. Wavelet Methods for Time Series Analysis, by Donald B. Percival and Andrew T. Walden 5. BayesianMethods,byThomasLeonardandJohnS.J.Hsu 6. EmpiricalProcessesinM-Estimation,bySaravandeGeer 7. NumericalMethodsofStatistics,byJohnF.Monahan 8. AUser’sGuidetoMeasureTheoreticProbability,byDavidPollard 9. TheEstimationandTrackingofFrequency,byB.G.QuinnandE.J.Hannan 10. DataAnalysisandGraphicsUsingR,byJohnMaindonaldandJohnBraun 11. StatisticalModels,byA.C.Davison 12. SemiparametricRegression,byD.Ruppert,M.P.Wand,andR.J.Carroll 13. ExerciseinProbability,byLoicChaumontandMarcYor 14. StatisticalAnalysisofStochasticProcessesinTime,byJ.K.Lindsey 15. MeasureTheoryandFiltering,byLakhdarAggounandRobertElliott 16. EssentialsofStatisticalInference,byG.A.YoungandR.L.Smith 17. ElementsofDistributionTheory,byThomasA.Severini 18. StatisticalMechanicsofDisorderedSystems,byAntonBovier 19. TheCoordinate-FreeApproachtoLinearModels,byMichaelJ.Wichura 20. RandomGraphDynamics,byRickDurrett 21. Networks,byPeterWhittle 22. SaddlepointApproximationswithApplications,byRonaldW.Butler 23. AppliedAsymptotics,byA.R.Brazzale,A.C.Davison,andN.Reid 24. RandomNetworksforCommunication,byMassimoFranceschettiandRonaldMeester 25. DesignofComparativeExperiments,byR.A.Bailey 26. SymmetryStudies,byMarlosA.G.Viana 27. ModelSelectionandModelAveraging,byGerdaClaeskensandNilsLidHjort 28. BayesianNonparametrics,byNilsLidHjort,PeterMu¨ller,andStephenG.Walker 29. FromFiniteSampletoAsymptoticMethods inStatistics,byPranab K.Sen,JulioM. Singer,andAntonioC.PedrosodeLima 30. BrownianMotion,byPeterMo¨rtersandYuvalPeres Probability Theory and Examples FourthEdition RICK DURRETT DepartmentofMathematics,DukeUniversity cambridgeuniversitypress Cambridge,NewYork,Melbourne,Madrid,CapeTown,Singapore, Sa˜oPaulo,Delhi,Dubai,Tokyo,MexicoCity CambridgeUniversityPress 32AvenueoftheAmericas,NewYork,NY10013-2473,USA www.cambridge.org Informationonthistitle:www.cambridge.org/9780521765398 (cid:1)C RickDurrett1991,1995,2004,2010 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firsteditionpublished1991byWadsworthPublishing Secondeditionpublished1995byDuxburyPress Thirdeditionpublished2004byDuxburyPress Fourtheditionpublished2010byCambridgeUniversityPress PrintedintheUnitedStatesofAmerica AcatalogrecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloginginPublicationdata Durrett,Richard,1951– Probability:theoryandexamples/RickDurrett.–4thed. p. cm. Includesbibliographicalreferencesandindex. ISBN978-0-521-76539-8(hardback) 1.Probabilities. I.Title. QA273.D865 2010 519.2–dc22 2010013387 ISBN 978-0-521-76539-8Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyofURLsfor externalorthird-partyInternetWebsitesreferredtointhispublicationanddoesnot guaranteethatanycontentonsuchWebsitesis,orwillremain,accurateorappropriate. Contents Preface pageix 1 MeasureTheory 1 1.1 ProbabilitySpaces 1 1.2 Distributions 9 1.3 RandomVariables 14 1.4 Integration 17 1.5 PropertiesoftheIntegral 23 1.6 ExpectedValue 27 1.6.1 Inequalities 27 1.6.2 IntegrationtotheLimit 29 1.6.3 ComputingExpectedValues 30 1.7 ProductMeasures,Fubini’sTheorem 36 2 LawsofLargeNumbers 41 2.1 Independence 41 2.1.1 SufficientConditionsforIndependence 43 2.1.2 Independence,Distribution,andExpectation 45 2.1.3 SumsofIndependentRandomVariables 47 2.1.4 ConstructingIndependentRandomVariables 50 2.2 WeakLawsofLargeNumbers 53 2.2.1 L2WeakLaws 53 2.2.2 TriangularArrays 56 2.2.3 Truncation 59 2.3 Borel-CantelliLemmas 64 2.4 StrongLawofLargeNumbers 73 2.5 ConvergenceofRandomSeries* 78 2.5.1 RatesofConvergence 82 2.5.2 InfiniteMean 84 2.6 LargeDeviations* 86 3 CentralLimitTheorems 94 3.1 TheDeMoivre-LaplaceTheorem 94 3.2 WeakConvergence 97 3.2.1 Examples 97 3.2.2 Theory 100 v vi Contents 3.3 CharacteristicFunctions 106 3.3.1 Definition,InversionFormula 106 3.3.2 WeakConvergence 112 3.3.3 MomentsandDerivatives 114 3.3.4 Polya’sCriterion* 118 3.3.5 TheMomentProblem* 120 3.4 CentralLimitTheorems 124 3.4.1 i.i.d.Sequences 124 3.4.2 TriangularArrays 129 3.4.3 PrimeDivisors(Erdo¨s-Kac)* 133 3.4.4 RatesofConvergence(Berry-Esseen)* 137 3.5 LocalLimitTheorems* 141 3.6 PoissonConvergence 146 3.6.1 TheBasicLimitTheorem 146 3.6.2 TwoExampleswithDependence 151 3.6.3 PoissonProcesses 154 3.7 StableLaws* 158 3.8 InfinitelyDivisibleDistributions* 169 3.9 LimitTheoremsinRd 172 4 RandomWalks 179 4.1 StoppingTimes 179 4.2 Recurrence 189 4.3 Visitsto0,ArcsineLaws* 201 4.4 RenewalTheory* 208 5 Martingales 221 5.1 ConditionalExpectation 221 5.1.1 Examples 223 5.1.2 Properties 226 5.1.3 RegularConditionalProbabilities* 230 5.2 Martingales,AlmostSureConvergence 232 5.3 Examples 239 5.3.1 BoundedIncrements 239 5.3.2 Polya’sUrnScheme 241 5.3.3 Radon-NikodymDerivatives 242 5.3.4 BranchingProcesses 245 5.4 Doob’sInequality,ConvergenceinLp 249 5.4.1 SquareIntegrableMartingales* 254 5.5 UniformIntegrability,ConvergenceinL1 258 5.6 BackwardsMartingales 264 5.7 OptionalStoppingTheorems 269 6 MarkovChains 274 6.1 Definitions 274 6.2 Examples 277 6.3 ExtensionsoftheMarkovProperty 282 6.4 RecurrenceandTransience 288 6.5 StationaryMeasures 296 6.6 AsymptoticBehavior 307 Contents vii 6.7 Periodicity,Tailσ-field* 314 6.8 GeneralStateSpace* 318 6.8.1 RecurrenceandTransience 322 6.8.2 StationaryMeasures 323 6.8.3 ConvergenceTheorem 324 6.8.4 GI/G/1Queue 325 7 ErgodicTheorems 328 7.1 DefinitionsandExamples 328 7.2 Birkhoff’sErgodicTheorem 333 7.3 Recurrence 338 7.4 ASubadditiveErgodicTheorem* 342 7.5 Applications* 347 8 BrownianMotion 353 8.1 DefinitionandConstruction 353 8.2 MarkovProperty,Blumenthal’s0-1Law 359 8.3 StoppingTimes,StrongMarkovProperty 365 8.4 PathProperties 370 8.4.1 ZerosofBrownianMotion 370 8.4.2 HittingTimes 371 8.4.3 Le´vy’sModulusofContinuity 375 8.5 Martingales 376 8.5.1 MultidimensionalBrownianMotion 380 8.6 Donsker’sTheorem 382 8.7 EmpiricalDistributions,BrownianBridge 391 8.8 LawsoftheIteratedLogarithm* 396 AppendixA:MeasureTheoryDetails 401 A.1 Carathe´odory’sExtensionTheorem 401 A.2 WhichSetsAreMeasurable? 407 A.3 Kolmogorov’sExtensionTheorem 410 A.4 Radon-NikodymTheorem 412 A.5 DifferentiatingundertheIntegral 416 References 419 Index 425

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.