ebook img

Probability, Statistics and Simulation: With Application Programs Written in R PDF

643 Pages·2022·10.372 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Probability, Statistics and Simulation: With Application Programs Written in R

UNITEXT 139 Alberto Rotondi · Paolo Pedroni Antonio Pievatolo Probability, Statistics and Simulation With Application Programs Written in R UNITEXT + La Matematica per il 3 2 Volume 139 Editor-in-Chief AlfioQuarteroni,PolitecnicodiMilano,Milan,Italy;ÉcolePolytechniqueFédérale deLausanne(EPFL),Lausanne,Switzerland SeriesEditors LuigiAmbrosio,ScuolaNormaleSuperiore,Pisa,Italy PaoloBiscari,PolitecnicodiMilano,Milan,Italy CiroCiliberto,UniversitàdiRoma“TorVergata”,Rome,Italy CamilloDeLellis,InstituteforAdvancedStudy,Princeton,NewJersey,USA MassimilianoGubinelli,HausdorffCenterforMathematics,Rheinische Friedrich-Wilhelms-Universität,Bonn,Germany VictorPanaretos,InstituteofMathematics,ÉcolePolytechniqueFédéralede Lausanne(EPFL),Lausanne,Switzerland LorenzoRosasco,DIBRIS,UniversitàdegliStudidiGenova,Genova,Italy; CenterforBrainsMindandMachines,MassachusettsInstituteofTechnology, Cambridge,Massachusetts,USA;IstitutoItalianodiTecnologia,Genova,Italy TheUNITEXT-LaMatematicaperil3+2seriesisdesignedforundergraduate andgraduateacademiccourses,andalsoincludesadvancedtextbooksataresearch level. Originally released in Italian, the series now publishes textbooks in English addressedtostudentsinmathematicsworldwide. Some of the most successful books in the series have evolved through several editions,adaptingtotheevolutionofteachingcurricula. Submissions must include at least 3 sample chapters, a table of contents, and a preface outlining the aims and scope of the book, how the book fits in with the currentliterature,andwhichcoursesthebookissuitablefor. For any further information, please contact the Editor at Springer: [email protected] THESERIESISINDEXEDINSCOPUS *** UNITEXT is glad to announce a new series of free webinars and interviews handledbytheBoardmembers,whowillrotateinordertointerviewtopexpertsin theirfield. In the first session, going live on June 9, Alfio Quarteroniwill interview Luigi Ambrosio. The speakers will dive into the subject of Optimal Transport, and will discuss the most challenging open problems and the future developments in the field. Clickheretosubscribetotheevent! https://cassyni.com/events/TPQ2UgkCbJvvz5QbkcWXo3 Alberto Rotondi • Paolo Pedroni • Antonio Pievatolo Probability, Statistics and Simulation With Application Programs Written in R AlbertoRotondi PaoloPedroni DipartimentodiFisica IstitutoNazionalediFisicaNucleare UniversitàdiPavia UniversitàdiPavia Pavia,Italy Pavia,Italy AntonioPievatolo IstitutodiMatematicaApplicatae TecnologieInformatiche ConsiglioNazionaledelleRicerche Milano,Italy ISSN2038-5714 ISSN2532-3318 (electronic) UNITEXT ISSN2038-5722 ISSN2038-5757 (electronic) LaMatematicaperil3+2 ISBN978-3-031-09428-6 ISBN978-3-031-09429-3 (eBook) https://doi.org/10.1007/978-3-031-09429-3 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerland AG2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewhole orpart ofthematerial isconcerned, specifically therights oftranslation, reprinting, reuse ofillustrations, recitation, broadcasting, reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Coverillustration:“Thefacenumberthreeandtwonumbersthree,onechanceover1326”(photobythe authors) ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Thisbook,basedonthefourthItalianedition,comesfromthecollaborationbetween twoexperimentalphysicistsandonestatistician.Amongnon-statisticians,physicists areperhapstheoneswhomostappreciateanduseprobabilityandstatistics,butmost ofthetimeinapragmaticandmanualway,havinginmindthesolutionofspecific problems or technical applications. On the other hand, in the crucial comparison between theory and experiment, it is sometimes necessary to use sophisticated methods which require knowledge of the fundamental logical and mathematical principles at the basis of the study of random phenomena. More generally, even those who are not statisticians have often to face, in any research field, problems thatrequireparticularattentionandexpertiseforthetreatmentofrandomoraleatory aspects. These skills are naturally mastered by the statistician, whose research interestsarethelawsofchance. This text has been prepared with the aim to seek a synthesis between these different approaches, to provide the reader not only with tools useful to address problems,butalsowithaguidetothecorrectmethodologiesneededtounderstand thecomplicatedandfascinatingworldofrandomphenomena. Such an objectiveobviouslyinvolvedchoices,sometimesevenpainful,bothof content type and style. As for style, we tried not to give up the precision needed toproperlyteachtheimportantconcepts.Whentreatingapplications,weprivileged themethodsthatdonotrequireexcessivepreliminaryconceptualelaborations. As an example,we have tried to use, wheneverpossible, approximatemethods for interval estimation, with Gaussian approximations for the estimator distribu- tions. Similarly, in the case of least squares, we have extensively adopted the approximationbased on the χ2 distribution to verify the fitting of a model to the data. We also avoided insisting on the formal treatment of complicated problems in cases where a solution using computer and simple simulation programs could be easilyfound. Inourbook,simulationplaysanimportantroleinthepresentationofmanytopics andintheverificationoftheaccuracyofmanytechniquesandapproximations.This v vi Preface feature, already present in the first Italian edition, is now common to many data sciencetextsand,inouropinion,confirmsthevalidityofourinitialchoice. Thisbookisaimedprimarilyatstudentsofscientificundergraduatecourses,such as engineering,computerscience, and physics.However,we thinkthat it can also be useful to all those scientific researchers who have to solve practical problems involvingprobabilistic,statistical,andsimulationaspects.Forthisreason,wehave given space to some topics, such as Monte Carlo methods and their applications, minimizationtechniques,anddataanalysismethods,which,usually,areonlybriefly mentionedinintroductorytexts. The mathematical knowledge required by the reader is that which is normally givenintheteachingofthebasiccalculuscourseinthescientificdegrees,withthe additionof minimumnotionsof linear algebraand advancedcalculus,such asthe elementaryconceptsofthederivationandintegrationofmultidimensionalfunctions. Thestructureofthetextallowsdifferentlearningpathsandreadinglevels.The first seven chapters deal with all the topics usually developedin a standard, basic statisticalcourse.Atthechoiceoftheteacher,thisprogramcanbeintegratedwith somemoreadvancedtopicsfromthe otherchapters.Forexample,Chap.8 should certainlybeincludedinasimulation-orientedcourse. The notions of probability and statistics usually taught to physics students in undergraduatelaboratorycoursesareenclosedinthefirstthreechapters,inChaps.6 and7(basicstatistics) andinChap.12,writtenexplicitlyforphysicistsandforall thosewhoneedtoprocessdatafromlaboratoryexperiments. Manypagesaredevotedtothecompleteresolutionofseveralexercisesinserted directlyinsidethechapterstobetterexplainthecoveredtopics.Wealsorecommend tothereadertheproblems(allwithsolutions)reportedattheendofeachchapter. This book makes use of the statistical software R, which has now become the world standard for solving statistical problems. The 2019 ranking of the Institute ofAmericanElectricalandElectronicEngineers(IEEE)placesRinfourthposition amongthemostpopularprogramminglanguages,afterPython,Java,andC.Many Rroutineshavebeenwrittenbyus,toguidethereaderwhilegoingthroughthetext. Theseroutinescanbeeasilydownloadedfromthelinkspecifiedbelow.Wetherefore recommendaninteractivereading,inwhichthestudyofatopicisfollowedbythe useofRroutinesinthewayshowedbothinthetextandinthetechnicalinstructions includedintheindicatedWebpages. We thank again the readers who reported errors or inaccuracies present in the previousItalianeditions,andthepublisher,Springer,forthecontinuedtrustinour work. Pavia,Italy AlbertoRotondi Pavia,Italy PaoloPedroni Milano,Italy AntonioPievatolo March2022 How to Use the Text Figures, equations, definitions, theorems, Tables, and exercises are numbered progressively. The abbreviationsof quotations(e.g.,[57])refer to the bibliographiclist at the endofthebook. Solutions of the problems are given in Appendix D. The table of symbols reportedinAppendixAmayalsobeuseful. Calculation codes as hist are marked with a different text style. Routines starting with a lowercase letter are (with some exceptions) the original R codes, whichcanbe freelycopiedfromtheCRAN (ComprehensiveRArchiveNetwork) website,whilethosestartingwithanuppercaseletterarewrittenbytheauthorsand arein: https://tinyurl.com/ProbStatSimul Inthissite,youwillalsofindalltheinformationfortheinstallationandtheuseof R,aguidetotheuseofroutineswrittenbytheauthorsandcomplementaryteaching materials. vii Contents 1 Probability................................................................... 1 1.1 Chance,ChaosandDeterminism .................................. 1 1.2 SomeBasicTerms .................................................. 8 1.3 TheConceptofProbability ........................................ 10 1.4 AxiomaticProbability .............................................. 13 1.5 RepeatedTrials ..................................................... 19 1.6 ElementsofCombinatorialAnalysis .............................. 23 1.7 Bayes’Theorem .................................................... 26 1.8 LearningAlgorithms ............................................... 33 1.9 Problems ............................................................ 36 2 RepresentationofRandomPhenomena.................................. 39 2.1 Introduction......................................................... 39 2.2 RandomVariables .................................................. 40 2.3 CumulativeorDistributionFunction .............................. 44 2.4 DataRepresentation ................................................ 46 2.5 DiscreteRandomVariables ........................................ 49 2.6 BinomialDistribution .............................................. 51 2.7 ContinuousRandomVariables .................................... 54 2.8 Mean,SumofSquares,Variance,StandardDeviation andQuantiles ....................................................... 57 2.9 Operators ........................................................... 64 2.10 SimpleRandomSample ........................................... 67 2.11 ConvergenceCriteria ............................................... 69 2.12 Problems ............................................................ 73 3 BasicProbabilityTheory .................................................. 75 3.1 Introduction......................................................... 75 3.2 PropertiesoftheBinomialDistribution ........................... 75 3.3 PoissonDistribution ................................................ 79 3.4 NormalorGaussianDensity ....................................... 81 ix x Contents 3.5 TheThree-SigmaLaw and the StandardGaussian Density .............................................................. 87 3.6 CentralLimitTheoremandUniversalityoftheGaussian Curve ................................................................ 91 3.7 PoissonStochasticProcesses ...................................... 94 3.8 χ2Density .......................................................... 101 3.9 UniformDensity ................................................... 108 3.10 Chebyshev’sInequality ............................................ 112 3.11 HowtoUseProbabilityCalculus .................................. 113 3.12 Problems ............................................................ 122 4 MultivariateProbabilityTheory.......................................... 125 4.1 Introduction......................................................... 125 4.2 MultivariateStatisticalDistributions .............................. 126 4.3 CovarianceandCorrelation ........................................ 134 4.4 Two-DimensionalGaussianDistribution ......................... 139 4.5 TheGeneralMultidimensionalCase .............................. 148 4.6 MultivariateProbabilityRegions .................................. 155 4.7 MultinomialDistribution .......................................... 159 4.8 Problems ............................................................ 161 5 FunctionsofRandomVariables........................................... 163 5.1 Introduction......................................................... 163 5.2 FunctionsofaRandomVariable .................................. 165 5.3 FunctionsofSeveralRandomVariables .......................... 168 5.4 MeanandVarianceTransformation ............................... 184 5.5 MeansandVariancesfornVariables ............................. 190 5.6 Problems ............................................................ 197 6 BasicStatistics:ParameterEstimation .................................. 199 6.1 Introduction......................................................... 199 6.2 ConfidenceIntervals ............................................... 201 6.3 ConfidenceIntervalswithPivotalVariables ...................... 204 6.4 MentionoftheBayesianApproach ............................... 207 6.5 SomeNotations .................................................... 208 6.6 ProbabilityEstimation ............................................. 209 6.7 ProbabilityEstimationfromLargeSamples ...................... 212 6.8 PoissonianIntervalEstimation .................................... 218 6.9 MeanEstimationfromLargeSamples ............................ 222 6.10 VarianceEstimationfromLargeSamples ......................... 224 6.11 MeanandVarianceEstimationforGaussianSamples ........... 229 6.12 HowtoUsetheEstimationTheory ................................ 232 6.13 EstimatesfromaFinitePopulation ................................ 239 6.14 HistogramAnalysis ................................................ 242 6.15 EstimationoftheCorrelation ...................................... 248 6.16 Problems ............................................................ 257

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.