ebook img

Probability Foundations for Engineers PDF

186 Pages·2023·4.711 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Probability Foundations for Engineers

Probability Foundations for Engineers This textbook will continue to be the best suitable textbook written specifically for a first course on probability theory and designed for industrial engineering and oper- ations management students. The book offers theory in an accessible manner and includes numerous practical examples based on engineering applications. Probability Foundations for Engineers, Second Edition, continues to focus spe- cifically on probability rather than probability and statistics. It offers a conversational presentation rather than a theorem or proof and includes examples based on engi- neering applications as it highlights Excel computations. This new edition presents a review of set theory and updates all descriptions, such as events versus outcomes, so that they are more understandable. Additional new material includes distributions such as beta and lognormal, a section on counting principles for defining probabili- ties, a section on mixture distributions and a pair of distribution summary tables. Intended for undergraduate engineering students, this new edition textbook offers a foundational knowledge of probability. It is also useful to engineers already in the field who want to learn more about probability concepts. An updated solutions man- ual is available for qualified textbook adoptions. Probability Foundations for Engineers Second Edition Joel A. Nachlas Second edition published 2023 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 and by CRC Press 4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN CRC Press is an imprint of Taylor & Francis Group, LLC © 2023 Joel A. Nachlas First edition published by CRC Press 2012 Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf. co.uk Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging‑in‑Publication Data Names: Nachlas, Joel A., author. Title: Probability foundations for engineers / Joel A. Nachlas. Description: Second edition. | Boca Raton : CRC Press, 2023. | Includes index. Identifiers: LCCN 2022047193 (print) | LCCN 2022047194 (ebook) | ISBN 9781032278483 (hbk) | ISBN 9781032278506 (pbk) | ISBN 9781003294382 (ebk) Subjects: LCSH: Engineering--Statistical methods. | Probabilities. | BISAC: BUSINESS & ECONOMICS / Operations Research. | MATHEMATICS / Probability & Statistics / Bayesian Analysis. | TECHNOLOGY & ENGINEERING / Operations Research. Classification: LCC TA340 .N28 2023 (print) | LCC TA340 (ebook) | DDC 519.2--dc23/eng/20221006 LC record available at https://lccn.loc.gov/2022047193 LC ebook record available at https://lccn.loc.gov/2022047194 ISBN: 978-1-032-27848-3 (hbk) ISBN: 978-1-032-27850-6 (pbk) ISBN: 978-1-003-29438-2 (ebk) DOI: 10.1201/9781003294382 Typeset in Times by SPi Technologies India Pvt Ltd (Straive) Dedication Dedicated to the memory of Dr. Marvin M. Nachlas, a talented scientist, a sensitive physician and a loving father. Contents Preface to the Second Edition ...................................................................................xi Author .....................................................................................................................xiii Chapter 1 Introduction ..........................................................................................1 1.1 Historical Perspectives...............................................................1 1.2 Formal Systems .........................................................................2 1.3 Intuition .....................................................................................3 Exercises ...............................................................................................3 Chapter 2 A Brief Review of Set Theory ..............................................................5 2.1 Introduction ...............................................................................5 2.2 Definitions .................................................................................5 2.3 Set Operations ...........................................................................6 2.4 Venn Diagrams ..........................................................................8 2.5 Dimensionality ........................................................................10 2.6 Conclusion ...............................................................................10 Exercises .............................................................................................10 Chapter 3 Probability Basics ...............................................................................15 3.1 Random Experiments, Outcomes and Events ..........................15 3.2 Probability ...............................................................................16 3.3 Probability Axioms ..................................................................17 3.4 Conditional Probability ...........................................................20 3.5 Independence ...........................................................................25 Exercises .............................................................................................27 Chapter 4 Random Variables and Distributions ..................................................33 4.1 Random Variables ....................................................................33 4.2 Distributions ............................................................................35 4.2.1 Probability Mass Functions ........................................38 4.2.2 Probability Density Functions ....................................40 4.2.3 Survivor Functions .....................................................41 4.3 Discrete Distribution Functions ...............................................43 4.3.1 The Bernoulli Distribution .........................................43 4.3.2 The Binomial Distribution ..........................................44 4.3.3 The Multinomial Distribution ....................................47 4.3.4 The Hypergeometric Distribution ...............................48 4.3.5 The Poisson Distribution ............................................49 4.3.6 The Geometric Distribution ........................................50 vii viii Contents 4.3.7 The Negative Binomial Distribution ..........................51 4.4 Continuous Distribution Functions ..........................................53 4.4.1 The Exponential Distribution .....................................54 4.4.2 The Gamma Distribution ............................................56 4.4.3 The Weibull Distribution ............................................57 4.4.4 The Beta Distribution .................................................58 4.4.5 The Normal Distribution ............................................59 4.4.6 The Lognormal Distribution .......................................64 4.4.7 The Uniform Distribution ...........................................66 4.5 Conditional Probability ...........................................................67 4.6 Residual Life Distributions ......................................................68 4.7 Hazard Functions .....................................................................69 4.8 Mixture Distributions ..............................................................71 4.9 Independent Random Variables ...............................................72 Exercises .............................................................................................72 Note ....................................................................................................80 Chapter 5 Joint, Marginal and Conditional Distributions ...................................81 5.1 The Idea of Joint Random Variables ........................................81 5.2 The Discrete Case ....................................................................82 5.2.1 Marginal Probability Functions ..................................84 5.2.2 Conditional Probability Functions .............................85 5.3 The Continuous Case ...............................................................87 5.3.1 Marginal Probability Functions ..................................89 5.3.2 Conditional Probability Functions .............................91 5.4 Independence ...........................................................................94 5.5 Bivariate and Multivariate Normal Distributions ....................97 5.6 Bivariate and Multivariate Exponential Distributions ...........104 Exercises ...........................................................................................108 Chapter 6 Expectation and Functions of Random Variables .............................113 6.1 Expectation ............................................................................113 6.2 Three Properties of Expectation ............................................116 6.3 Expectation and Random Vectors ..........................................118 6.4 Conditional Expectation ........................................................122 6.5 General Functions of Random Variables ...............................127 6.5.1 One-Dimensional Functions .....................................127 6.5.2 Multidimensional Functions .....................................129 6.6 Expectation and Functions of Multiple Random Variables ...132 6.7 Sums of Independent Random Variables ...............................132 Exercises ...........................................................................................138 Contents ix Chapter 7 Moment Generating Functions .........................................................145 7.1 Construction of the Moment Generating Function ................145 7.2 Convolutions ..........................................................................148 7.3 Joint Moment Generating Functions .....................................150 7.4 Conditional Moment Generating Functions ..........................156 Exercises ...........................................................................................158 Chapter 8 Approximations and Limiting Behavior ...........................................161 8.1 Distribution-Free Approximations .........................................161 8.2 Normal and Poisson Approximations ....................................163 8.3 Laws of Large Numbers and the Central Limit Theorem ......166 Exercises ...........................................................................................167 Index ......................................................................................................................169

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.