UNITEXT for Physics Nicola Cufaro Petroni Probability and Stochastic Processes for Physicists UNITEXT for Physics Series Editors Michele Cini, University of Rome Tor Vergata, Roma, Italy Attilio Ferrari, University of Turin, Turin, Italy Stefano Forte, University of Milan, Milan, Italy Guido Montagna, University of Pavia, Pavia, Italy Oreste Nicrosini, University of Pavia, Pavia, Italy Luca Peliti, University of Napoli, Naples, Italy Alberto Rotondi, Pavia, Italy Paolo Biscari, Politecnico di Milano, Milan, Italy Nicola Manini, University of Milan, Milan, Italy Morten Hjorth-Jensen, University of Oslo, Oslo, Norway UNITEXTforPhysicsseries,formerly UNITEXT CollanadiFisicae Astronomia, publishestextbooksandmonographsinPhysicsandAstronomy,mainlyinEnglish language, characterized of a didactic style and comprehensiveness. The books publishedinUNITEXTforPhysicsseriesareaddressedtoupperundergraduateand graduate students, but also to scientists and researchers as important resources for their education, knowledge and teaching. More information about this series at http://www.springer.com/series/13351 Nicola Cufaro Petroni Probability and Stochastic Processes for Physicists 123 NicolaCufaro Petroni Department ofPhysics University of Bari Bari, Italy ISSN 2198-7882 ISSN 2198-7890 (electronic) UNITEXTfor Physics ISBN978-3-030-48407-1 ISBN978-3-030-48408-8 (eBook) https://doi.org/10.1007/978-3-030-48408-8 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SwitzerlandAG2020 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland … Iuvat integros accedere fontis atquehaurire, iuvatquenovosdecerpereflores1 Lucretius, I 927-8 1TranslationbyA.E.Stallings(Penguin,London,2007): Ithrilltocomeuponuntastedspringsandslakemythirst. Ijoytopluckstrangeflowers… Preface Thisbookoriginatesfromthefull-semesterlessonsheldyearlywithinthemaster’s degree course in Physics at the University of Bari. Part I about Probability essen- tiallystartsfromscratchinChap.1asifnothinghadbeenknownbeforeaboutthis topic,anditquicklygoesontoconceptuallyrelevant,butlessfamiliar,issues.The keyfeatureofthispartnodoubtisthenotionofrandomvariables(andthenalsoof stochastic processes) which is introduced in Chap. 3 as a paramount concept that differs from that of distribution previously elucidated in Chap. 2 . The interplay betweentherandomvariablesandtheirdistributionsisamainstapleofthepresent volume. Chapter 4 finally deals with a panoply of limit theorems that in any case represent the main gate to the world of the subsequent sections. PartIIisthendevotedtoStochasticProcessesthatarepresentedinChap.5from arathergeneralstandpointwithparticularattentiontostationarityandergodicity.In Chap. 6, the first two examples of classical processes (Poisson and Wiener) are heuristically introduced with a discussion of the familiar procedures used to man- ufacturetheirrandomtrajectories;thefirstpresentationofboththewhitenoiseand theBrownianmotionisalsoaddedin.ThevasttopicofMarkovianityistackledin Chap. 7 with a discussion of the equations ruling the distributions of the jump-diffusionprocesses:thisgivesalsotheopportunityofintroducingtheCauchy and Ornstein-Uhlenbeck processes, and of including a quick reference to the gen- eraltopicoftheLévyprocesses.Theequationsrulinginsteadoftheevolutionofthe trajectories of the diffusion processes, namely the Itō stochastic differential equa- tions, are presentedinChap. 8in theframework of thestochastic calculus: several examples of solutions of stochastic differential equations are also produced. ThetwochaptersofPartIIIdealfinallywiththemodelingofparticularphysical problemsbymeansofthetoolsacquiredintheprevioussections.Chapter9givesa broad presentationof adynamical theory ofthe Brownian motion modeled mainly by the Ornstein-Uhlenbeck process and is completed with a discussion of the Smoluchowski approximation and of the Boltzmann equilibrium distributions. In Chap.10anaccountisgivenofthestochasticmechanics,amodelleadingtoadeep connection between the time-reversal invariant diffusion processes and the Schrödingerequation:atopicapparentlyrelevantforphysicistsandmathematicians vii viii Preface alike.Ontheonehandindeeditshows,forinstance,thatthestatisticalBornruleof quantum mechanics could not be just a postulate added by hand to its formal apparatus,andon theother italso hintstowider than usual possibledevelopments of the stochastic analysis. A number of appendices conclude the book: a few of them are simple com- plements, lengthy proofs and useful reminders, but others are short discussions about particular relevant topics moved over there to avoid interrupting the main text.Forinstance,AppendixAdealswiththepossibleincompatibilityoflegitimate joint distributions; Appendix C discusses the celebrated Bertrand paradox; Appendix H shows the baffling outcomes of a naive application of calculus to stochastic processes; and Appendix I presents the case of a process satisfying the Chapman-Kolmogorov conditions despite it being non-Markovian. Besides its traditional purposes, one of the aims of this book is to bridge a gap often existing between physicists and mathematicians in the subject area of prob- ability and stochastic processes: a difference usually ranging from notions to notations,fromtechniquestonames.This,however,wouldarguablybeanoutcome hardtobeachievedwithinthescopeeitherofonecourseorevenofonebook,and thereforewewillbesatisfiedifweonlyapproachedthegoalof—atleastpartially— restoring an intellectual osmosis that has always been fruitful along the centuries. While even this limited prize would not come in any case without a price—it usually requires some effort from the physics students to go beyond the most familiarwaysofthinking—itisimportanttoremarkthatthefocusofthefollowing chapters will always be on concepts and models, rather than on methods and mathematical rigor. Most important theorems, for instance, will not be skipped away, but they will be presented and clarified in their role without proofs, and the interested reader will be referred for further details tothe existing literature quoted in Bibliography. Bari, Italy Nicola Cufaro Petroni April 2020 Contents Part I Probability 1 Probability Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4 Conditional Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5 Independent Events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1 Distributions on N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.1 Finite and Countable Spaces . . . . . . . . . . . . . . . . . . . . 19 2.1.2 Bernoulli Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 Distributions on R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.1 Cumulative Distribution Functions . . . . . . . . . . . . . . . 26 2.2.2 Discrete Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.3 Absolutely Continuous Distributions: Density . . . . . . . 30 2.2.4 Singular Distributions. . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.5 Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.3 Distributions on Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.3.1 Multivariate Distribution Functions . . . . . . . . . . . . . . . 36 2.3.2 Multivariate Densities. . . . . . . . . . . . . . . . . . . . . . . . . 38 2.3.3 Marginal Distributions . . . . . . . . . . . . . . . . . . . . . . . . 40 2.3.4 Copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.4 Distributions on R1 and RT . . . . . . . . . . . . . . . . . . . . . . . . . . 45 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ix x Contents 3 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.1 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.1.1 Measurability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.1.2 Laws and Distributions. . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.3 Generating New rv’s . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.2 Random Vectors and Stochastic Processes . . . . . . . . . . . . . . . . 55 3.2.1 Random Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2.2 Joint and Marginal Distributions and Densities. . . . . . . 57 3.2.3 Independence of rv’s . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.2.4 Decomposition of Binomial rv’s . . . . . . . . . . . . . . . . . 63 3.3 Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.1 Integration and Expectation. . . . . . . . . . . . . . . . . . . . . 66 3.3.2 Change of Variables. . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3.3 Variance and Covariance . . . . . . . . . . . . . . . . . . . . . . 75 3.4 Conditioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.4.1 Conditional Distributions . . . . . . . . . . . . . . . . . . . . . . 81 3.4.2 Conditional Expectation . . . . . . . . . . . . . . . . . . . . . . . 84 3.4.3 Optimal Mean Square Estimation . . . . . . . . . . . . . . . . 90 3.5 Combinations of rv’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.5.1 Functions of rv’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.5.2 Sums of Independent rv’s. . . . . . . . . . . . . . . . . . . . . . 95 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4 Limit Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.1 Convergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.2 Characteristic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.2.1 Definition and Properties . . . . . . . . . . . . . . . . . . . . . . 102 4.2.2 Gaussian Laws. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.2.3 Composition and Decomposition of Laws . . . . . . . . . . 111 4.3 Laws of Large Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.4 Gaussian Theorems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.5 Poisson Theorems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.6 Where the Classical Limit Theorems Fail. . . . . . . . . . . . . . . . . 124 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Part II Stochastic Processes 5 General Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 5.1 Identification and Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 129 5.2 Expectations and Correlations . . . . . . . . . . . . . . . . . . . . . . . . . 132 5.3 Convergence and Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . 133 5.4 Differentiation and Integration in ms . . . . . . . . . . . . . . . . . . . . 134