ebook img

Probability and Statistics for Particle Physics PDF

249 Pages·2017·3.505 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Probability and Statistics for Particle Physics

ñ Carlos Ma a Probability and Statistics for Particle Physics 123 Carlos Maña Departamento deInvestigación Básica CentrodeInvestigaciones Energéticas, Medioambientales yTecnológicas Madrid Spain ISSN 2198-7882 ISSN 2198-7890 (electronic) UNITEXTfor Physics ISBN978-3-319-55737-3 ISBN978-3-319-55738-0 (eBook) DOI 10.1007/978-3-319-55738-0 LibraryofCongressControlNumber:2017936885 ©SpringerInternationalPublishingAG2017 ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Contents 1 Probability... .... .... .... ..... .... .... .... .... .... ..... .. 1 1.1 The Elements of Probability: ðX;B;lÞ.. .... .... .... ..... .. 1 1.1.1 Events and Sample Space: ðXÞ. .... .... .... ..... .. 1 1.1.2 r-algebras ðBXÞ and Measurable Spaces ðX;BXÞ.... .. 3 1.1.3 Set Functions and Measure Space: ðX;BX;lÞ.. ..... .. 6 1.1.4 Random Quantities.. .... .... .... .... .... ..... .. 10 1.2 Conditional Probability and Bayes Theorem . .... .... ..... .. 14 1.2.1 Statistically Independent Events .... .... .... ..... .. 15 1.2.2 Theorem of Total Probability .. .... .... .... ..... .. 18 1.2.3 Bayes Theorem..... .... .... .... .... .... ..... .. 19 1.3 Distribution Function.. ..... .... .... .... .... .... ..... .. 23 1.3.1 Discrete and Continuous Distribution Functions..... .. 24 1.3.2 Distributions in More Dimensions .. .... .... ..... .. 28 1.4 Stochastic Characteristics.... .... .... .... .... .... ..... .. 35 1.4.1 Mathematical Expectation. .... .... .... .... ..... .. 35 1.4.2 Moments of a Distribution .... .... .... .... ..... .. 36 1.4.3 The “Error Propagation Expression”. .... .... ..... .. 44 1.5 Integral Transforms ... ..... .... .... .... .... .... ..... .. 45 1.5.1 The Fourier Transform ... .... .... .... .... ..... .. 45 1.5.2 The Mellin Transform.... .... .... .... .... ..... .. 53 1.6 Ordered Samples . .... ..... .... .... .... .... .... ..... .. 63 1.7 Limit Theorems and Convergence. .... .... .... .... ..... .. 67 1.7.1 Chebyshev’s Theorem.... .... .... .... .... ..... .. 68 1.7.2 Convergence in Probability.... .... .... .... ..... .. 69 1.7.3 Almost Sure Convergence .... .... .... .... ..... .. 70 1.7.4 Convergence in Distribution... .... .... .... ..... .. 71 1.7.5 Convergence in Lp Norm . .... .... .... .... ..... .. 76 1.7.6 Uniform Convergence.... .... .... .... .... ..... .. 77 Appendices... .... .... .... ..... .... .... .... .... .... ..... .. 81 References ... .... .... .... ..... .... .... .... .... .... ..... .. 85 2 Bayesian Inference .... .... ..... .... .... .... .... .... ..... .. 87 2.1 Elements of Parametric Inference.. .... .... .... .... ..... .. 88 2.2 Exchangeable Sequences .... .... .... .... .... .... ..... .. 89 2.3 Predictive Inference... ..... .... .... .... .... .... ..... .. 91 2.4 Sufficient Statistics.... ..... .... .... .... .... .... ..... .. 92 2.5 Exponential Family ... ..... .... .... .... .... .... ..... .. 94 2.6 Prior Functions... .... ..... .... .... .... .... .... ..... .. 95 2.6.1 Principle of Insufficient Reason .... .... .... ..... .. 96 2.6.2 Parameters of Position and Scale ... .... .... ..... .. 97 2.6.3 Covariance Under Reparameterizations... .... ..... .. 103 2.6.4 Invariance Under a Group of Transformations . ..... .. 109 2.6.5 Conjugated Distributions.. .... .... .... .... ..... .. 115 2.6.6 Probability Matching Priors ... .... .... .... ..... .. 119 2.6.7 Reference Analysis.. .... .... .... .... .... ..... .. 125 2.7 Hierarchical Structures. ..... .... .... .... .... .... ..... .. 133 2.8 Priors for Discrete Parameters .... .... .... .... .... ..... .. 135 2.9 Constrains on Parameters and Priors ... .... .... .... ..... .. 136 2.10 Decision Problems.... ..... .... .... .... .... .... ..... .. 137 2.10.1 Hypothesis Testing.. .... .... .... .... .... ..... .. 139 2.10.2 Point Estimation.... .... .... .... .... .... ..... .. 145 2.11 Credible Regions. .... ..... .... .... .... .... .... ..... .. 147 2.12 Bayesian (B) Versus Classical (F) Philosophy ... .... ..... .. 148 2.13 Some Worked Examples .... .... .... .... .... .... ..... .. 154 2.13.1 Regression ... ..... .... .... .... .... .... ..... .. 154 2.13.2 Characterization of a Possible Source of Events..... .. 158 2.13.3 Anisotropies of Cosmic Rays.. .... .... .... ..... .. 161 References ... .... .... .... ..... .... .... .... .... .... ..... .. 166 3 Monte Carlo Methods . .... ..... .... .... .... .... .... ..... .. 169 3.1 Pseudo-Random Sequences .. .... .... .... .... .... ..... .. 170 3.2 Basic Algorithms. .... ..... .... .... .... .... .... ..... .. 171 3.2.1 Inverse Transform... .... .... .... .... .... ..... .. 171 3.2.2 Acceptance-Rejection (Hit-Miss; J. Von Neumann 1951) ... .... ..... .... .... .... .... .... ..... .. 178 3.2.3 Importance Sampling .... .... .... .... .... ..... .. 183 3.2.4 Decomposition of the Probability Density. .... ..... .. 185 3.3 Everything at Work... ..... .... .... .... .... .... ..... .. 186 3.3.1 The Compton Scattering.. .... .... .... .... ..... .. 186 3.3.2 An Incoming Flux of Particles . .... .... .... ..... .. 192 3.4 Markov Chain Monte Carlo.. .... .... .... .... .... ..... .. 199 3.4.1 Sampling from Conditionals and Gibbs Sampling ... .. 214 3.5 Evaluation of Definite Integrals ... .... .... .... .... ..... .. 218 References ... .... .... .... ..... .... .... .... .... .... ..... .. 219 4 Information Theory ... .... ..... .... .... .... .... .... ..... .. 221 4.1 Quantification of Information. .... .... .... .... .... ..... .. 221 4.2 Expected Information and Entropy. .... .... .... .... ..... .. 223 4.3 Conditional and Mutual Information ... .... .... .... ..... .. 226 4.4 Generalization for Absolute Continuous Random Quantities .. .. 228 4.5 Kullback–Leibler Discrepancy and Fisher’s Matrix .... ..... .. 229 4.5.1 Fisher’s Matrix..... .... .... .... .... .... ..... .. 230 4.5.2 Asymptotic Behaviour of the Likelihood Function... .. 232 4.6 Some Properties of Information... .... .... .... .... ..... .. 234 4.7 Geometry and Information... .... .... .... .... .... ..... .. 238 References ... .... .... .... ..... .... .... .... .... .... ..... .. 244 Introduction They say that understanding ought to work by the rules of right reason. These rules are, or ought to be, contained in Logic;buttheactualscienceoflogicisconversantatpresent only with things either certain, impossible, or entirely doubtful,noneofwhich(fortunately)wehavetoreasonon. Therefore the true logic of this world is the calculus of Probabilities, which takes account of the magnitude of the probabilitywhichis,oroughttobe,inareasonableman’s mind. J.C.Maxwell These notes, based on a one-semester course on probability and statistics given in the former Doctoral Program of the Department of Theoretical Physics at the Universidad Complutense in Madrid, are a more elaborated version of a series of lectures given at different places to advanced graduate and Ph.D. students. Althoughtheycertainlyhavetobetailoredforundergraduatestudents,theycontain ahumbleoverviewofthebasicconceptsandideasoneshouldhaveinmindbefore getting involved in data analysis and I believe they will be a useful reference for both students and researchers. I feel, maybe wrongly, that there is a recent tendency in a subset of the particle physics community to consider statistics as a collection of prescriptions written in some holy references that are used blindly with the only arguments that either “everybody does it that way” or that “it has always been done this way.” In the lectures, I have tried to demystify the “how-to” recipes not because they are not usefulbutbecause,ontheonehand,theyareapplicableundersomeconditionsthat tend to be forgotten and, on the other, because if the concepts are clear so will be the way to proceed (“at least formally”) for the problems that come across in particle physics. At the end, the quote from Laplace given at the beginning of the first lecture is what it is all about. There is a countable set of books on probability and statistics and a sizable subsetofthemareverygood,outofwhichIwouldrecommendthefollowingones (a personal choice function). Chapter 1 deals with probability and this is just a measure, a finite nonnegative measure, so it will be very useful to read some sections of Measure Theory (2006; Springer) by V.I. Bogachev, in particular Chaps. 1 and 2 of the first volume. However, for those students who are not yet familiar with measure theory, there is an appendix to this chapter with a short digressiononsomebasicconcepts.Alargefractionofthematerialpresentedinthis lecture can be found in more depth, together with other interesting subjects, in the book Probability: A Graduate Course (2013; Springer Texts in Statistics) by A. Gut.Chapter2isaboutstatistical inference,Bayesianinferenceinfact,andamust forthistopicistheBayesianTheory(1994;JohnWiley&Sons)byJ.M.Bernardo andA.F.M.SmiththatcontainsalsoanenlighteningdiscussionabouttheBayesian and frequentist approaches in the Appendix B. It is beyond question that in any worthwhile course on statistics the ubiquitous frequentist methodology has to be taught as well and there are excellent references on the subject. Students are encouraged to look, for instance, at Statistical Methods in Experimental Physics (2006;WorldScientific)byF.James,StatisticsforNuclearandParticlePhysicists (1989; Cambridge University Press) by L. Lyons, or Statistical Data Analysis (1997;OxfordSciencePub.)byG.Cowan.Last,Chap.3isdevotedtoMonteCarlo simulation, an essential tool in statistics and particle physics, and Chap. 4 to information theory, and, like for the first chapters, both have interesting references given along the text. “Time is short, my strength is limited,…”, Kafka dixit, so many interesting subjectsthatdeserveawholelecturebythemselvesareleftaside.Tomentionsome: an historical development of probability and statistics, Bayesian networks, gener- alized distributions (a different approach to probability distributions), decision theory(gamestheory),andMarkovchainsforwhichweshallstateonlytherelevant properties without further explanation. I am grateful to Drs. J. Berdugo, J. Casaus, C. Delgado, and J. Rodriguez for theirsuggestionsandacarefulreadingofthetextandmuchindebtedtoDr.Hisako Niko.Werenotforherinterest,thisnoteswouldstillbeinthedrawer.Mygratitude goes also to Mieke van der Fluit for her assistance with the edition. Chapter 1 Probability TheTheoryofProbabilitiesisbasicallynothingelsebut commonsensereducedtocalculus P.S.Laplace 1.1 TheElementsofProbability:((cid:2),B,μ) TheaxiomaticdefinitionofprobabilitywasintroducedbyA.N.Kolmogorovin1933 and starts with the concepts of samplespace((cid:2)) and spaceofevents(B(cid:2)) with structureofσ-algebra.Whenthepair((cid:2),B(cid:2))isequippedwithameasureμwehave ameasurespace(E,B,μ) and, if the measure is aprobabilitymeasureP we talk aboutaprobabilityspace((cid:2),B(cid:2),P).Letsdiscussalltheseelements. 1.1.1 EventsandSampleSpace:((cid:2)) Tolearnaboutthestateofnature,wedoexperimentsandobservationsofthenatural worldandaskourselvesquestionsabouttheoutcomes.Inageneralway,theobject of questions we may ask about the result of an experiment such that the possible answersareitoccursoritdoesnotoccurarecalledevents.Therearedifferentkinds ofeventsandamongthemwehavetheelementaryevents;thatis,thoseresultsof therandomexperimentthatcannotbedecomposedinothersoflesserentity.The samplespace((cid:2))isthesetofallthepossibleelementaryoutcomes(events)ofa randomexperimentandtheyhavetobe: (i) exhaustive:anypossibleoutcomeoftheexperimenthastobeincludedin(cid:2); (ii) exclusive:thereisnooverlapofelementaryresults. 2 1 Probability Tostudyrandomphenomenawestartbyspecifyingthesamplespaceand,therefore, we have to have a clear idea of what are the possible results of the experiment. To center the ideas, consider the simple experiment of rolling a die with 6 faces numberedfrom1to6.Weconsideraselementaryevents e ={get the number i on the upper face}; i =1,...,6 i so(cid:2)={e ,...,e }.Notethatanypossibleoutcomeoftherollisincludedin(cid:2)and 1 6 wecannothavetwoormoreelementaryresultssimultaneously.Butthereareother types of events besides the elementary ones. We may be interested for instance in theparityofthenumbersowewouldliketoconsideralsothepossibleresults1 A={get an even number} and Ac ={get an odd number} Theyarenotelementarysincetheresult A = {e ,e ,e }isequivalenttogete ,e 2 4 6 2 4 ore and Ac = (cid:2)\ Atogete ,e ore .Ingeneral,aneventisanysubset2 ofthe 6 1 3 5 samplespaceandweshalldistinguishbetween: elementaryevents: anyelementofthesamplespace(cid:2); events: anysubsetofthesamplespace; andtwoextremeevents: sureevents: S ={get any result contained in (cid:2)}≡(cid:2) S impossibleevents: S ={get any result not contained in (cid:2)}≡∅ I Anyeventthatisneithersurenorimpossibleiscalledrandomevent.Goingbackto therollingofthedie,sureeventsare S ={get a number n|1≤n≤6}=(cid:2) or S S ={get a number that is even or odd}=(cid:2) S impossibleeventsare S ={get an odd number that is not prime}=∅ or I S ={get the number 7}=∅ I 1GiventwosetsA,B⊂(cid:2),weshalldenotebyActhecomplementofA(thatis,thesetofallelements of(cid:2)thatarenotin A)andby A\B ≡ A∩BcthesetdifferenceorrelativecomplementofBinA (thatis,thesetofelementsthatareinAbutnotinB).ItisclearthatAc=(cid:2)\A. 2Thisisnotcompletelytrueifthesamplespaceisnon-denumerablesincetherearesubsetsthatcan notbeconsideredasevents.ItishowevertrueforthesubsetsofRn weshallbeinterestedin.We shalltalkaboutthatinSect.1.1.2.2. 1.1 TheElementsofProbability:((cid:2),B,μ) 3 andrandomeventsareanyofthee or,forinstance, i S ={get an even number}={e ,e ,e } r 2 4 6 Dependingonthenumberofpossibleoutcomesoftheexperiment,thethesample spacecanbe: finite: ifthenumberofelementaryeventsisfinite; Example:Intherollingofadie,(cid:2) = {e ;i = 1,...,6} i sodim((cid:2))=6. countable: when there is a one-to-one correspondence between the elementsof(cid:2)andN; Example:Considertheexperimentofflippingacoinandstopping whenwegetH.Then(cid:2)={H,TH,TTH,TTTH,...}. non-denumerable: ifitisneitheroftheprevious; Example:Forthedecaytimeofanunstableparticle(cid:2)= {t∈R|t≥0}=[0,∞)andfortheproductionpolarangle ofaparticle(cid:2)={θ∈R|0≤θ≤π}=[0,π]. Itisimportanttonotethattheeventsarenotnecessarilynumericalentities.We couldhaveforinstancethediewithcoloredfacesinsteadofnumbers.Weshalldeal withthatwhendiscussingrandomquantities.Last,givenasamplespace(cid:2)weshall talk quite frequently about a partition(or a completesystemofevents); that is, a sequence{S}ofevents,finiteorcountable,suchthat i (cid:2) (cid:3) (cid:2)= S (complete system) and S S =∅; i(cid:11)= j (disjoint events). i i j i ∀i,j 1.1.2 σ-algebras(B(cid:2))andMeasurableSpaces((cid:2),B(cid:2)) As we have mentioned, in most cases we are interested in events other than the elementary ones. We single out them in a class of events that contains all the possible results of the experiment we are interested in such that when we ask about the union, intersection and complements of events we obtain elements that belongthesameclass.Anon-emptyfamilyB(cid:2) = {Si}in=1 ofsubsetsofthesample space (cid:2) that isclosed(or stable) under the operations ofunionandcomplement;

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.