ebook img

Probability and Computing: Randomization and Probabilistic Techniques in Algorithms and Data Analysis PDF

490 Pages·2017·11.686 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Probability and Computing: Randomization and Probabilistic Techniques in Algorithms and Data Analysis

Probability and Computing Randomization and probabilistic techniques play an important role in modern computer science,withapplicationsrangingfromcombinatorialoptimizationandmachinelearning tocommunicationnetworksandsecureprotocols. This textbook provides an indispensable teaching tool to accompany a one- or two- semester course for advanced undergraduate or beginning graduate students in computer scienceandappliedmathematics.Itoffersacomprehensiveintroductiontotheroleofran- domizationandprobabilistictechniquesinmoderncomputerscience,inparticulartotech- niques and paradigms used in the development and probabilistic analysis of algorithms andfordataanalyses.Itassumesonlyanelementarybackgroundindiscretemathematics andgivesarigorousyetaccessibletreatmentofthematerial,withnumerousexamplesand applications. The first half of the book covers core material, including random sampling, expecta- tions,Markov’sinequality,Chebyshev’sinequality,Chernoffbounds,balls-and-binsmod- els, the probabilistic method, and Markov chains. In the second half, the authors delve intomoreadvancedtopicssuchascontinuousprobability,applicationsoflimitedindepen- dence,entropy,MarkovchainMonteCarlomethods,coupling,martingales,andbalanced allocations. This greatly expanded new edition includes several newly added chapters and sec- tions, covering topics including normal distributions, sample complexity, VC dimension, Rademachercomplexity,powerlawsandrelateddistributions,cuckoohashing,andappli- cations of the Lovász Local Lemma. New material relevant to machine learning and big dataanalysisenablesstudentstolearnup-to-datetechniquesandapplications.Amongthe manynewexercisesandexamplesareprogramming-relatedexercisesthatprovidestudents withpracticalexperienceandtrainingrelatedtothetheoreticalconceptscoveredinthetext. Michael Mitzenmacher is a Professor of Computer Science in the School of Engineering and Applied Sciences at Harvard University, where he was also the Area Dean for Com- puter Science from 2010 to 2013. Michael has authored or co-authored over 200 confer- enceandjournalpublicationsonavarietyoftopics,includingalgorithmsfortheInternet, efficient hash-based data structures, erasure and error-correcting codes, power laws, and compression.Hisworkonlow-densityparity-checkcodessharedthe2002IEEEInforma- tionTheorySocietyBestPaperAwardandwonthe2009ACMSIGCOMMTestofTime Award. He is an ACM Fellow, and was elected as the Chair of the ACM Special Interest GrouponAlgorithmsandComputationTheoryin2015. EliUpfalisaProfessorofComputerScienceatBrownUniversity,wherehewasalsothe departmentchairfrom2002to2007.PriortojoiningBrownin1998,hewasaresearcherand projectmanagerattheIBMAlmadenResearchCenter,andaProfessorofAppliedMath- ematics and Computer Science at the Weizmann Institute of Science. His main research interests are randomized algorithms, probabilistic analysis of algorithms, and computa- tionalstatistics,withapplicationsrangingfromcombinatorialandstochasticoptimization, computationalbiology,andcomputationalfinance.HeisaFellowofboththeIEEEandthe ACM. Probability and Computing Randomization and Probabilistic Techniques in Algorithms and Data Analysis Second Edition Michael Mitzenmacher Eli Upfal UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 4843/24,2ndFloor,AnsariRoad,Daryaganj,Delhi-110002,India 79AnsonRoad,#06-04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107154889 10.1017/9781316651124 ©MichaelMitzenmacherandEliUpfal2017 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2017 PrintedintheUnitedStatesofAmericabySheridanBooks,Inc. AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloginginPublicationData Names:Mitzenmacher,Michael,1969–author.|Upfal,Eli,1954–author. Title:Probabilityandcomputing/MichaelMitzenmacherEliUpfal. Description:Secondedition.|Cambridge,UnitedKingdom; NewYork,NY,USA:CambridgeUniversityPress,[2017]| Includesbibliographicalreferencesandindex. Identifiers:LCCN2016041654|ISBN9781107154889 Subjects:LCSH:Algorithms.|Probabilities.|Stochasticanalysis. Classification:LCCQA274.M574 2017|DDC518/.1–dc23 LCrecordavailableathttps://lccn.loc.gov/2016041654 ISBN978-1-107-15488-9Hardback Additionalresourcesforthispublicationatwww.cambridge.org/Mitzenmacher. CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyInternetWebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchWebsitesis,orwillremain, accurateorappropriate. To Stephanie,Michaela,Jacqueline,andChloe M.M. Liane,Tamara,andIlan E.U. Contents PrefacetotheSecondEdition pagexv PrefacetotheFirstEdition xvii 1 EventsandProbability 1 1.1 Application:VerifyingPolynomialIdentities 1 1.2 AxiomsofProbability 3 1.3 Application:VerifyingMatrixMultiplication 8 1.4 Application:NaïveBayesianClassifier 12 1.5 Application:ARandomizedMin-CutAlgorithm 15 1.6 Exercises 17 2 DiscreteRandomVariablesandExpectation 23 2.1 RandomVariablesandExpectation 23 2.1.1 LinearityofExpectations 25 2.1.2 Jensen’sInequality 26 2.2 TheBernoulliandBinomialRandomVariables 27 2.3 ConditionalExpectation 29 2.4 TheGeometricDistribution 33 2.4.1 Example:CouponCollector’sProblem 35 2.5 Application:TheExpectedRun-TimeofQuicksort 37 2.6 Exercises 40 3 MomentsandDeviations 47 3.1 Markov’sInequality 47 3.2 VarianceandMomentsofaRandomVariable 48 3.2.1 Example:VarianceofaBinomialRandomVariable 51 vii contents 3.3 Chebyshev’sInequality 51 3.3.1 Example:CouponCollector’sProblem 53 3.4 MedianandMean 55 3.5 Application:ARandomizedAlgorithmforComputingtheMedian 57 3.5.1 TheAlgorithm 58 3.5.2 AnalysisoftheAlgorithm 59 3.6 Exercises 62 4 ChernoffandHoeffdingBounds 66 4.1 MomentGeneratingFunctions 66 4.2 DerivingandApplyingChernoffBounds 68 4.2.1 ChernoffBoundsfortheSumofPoissonTrials 68 4.2.2 Example:CoinFlips 72 4.2.3 Application:EstimatingaParameter 72 4.3 BetterBoundsforSomeSpecialCases 73 4.4 Application:SetBalancing 76 4.5 TheHoeffdingBound 77 4.6∗ Application:PacketRoutinginSparseNetworks 79 4.6.1 PermutationRoutingontheHypercube 80 4.6.2 PermutationRoutingontheButterfly 85 4.7 Exercises 90 5 Balls,Bins,andRandomGraphs 97 5.1 Example:TheBirthdayParadox 97 5.2 BallsintoBins 99 5.2.1 TheBalls-and-BinsModel 99 5.2.2 Application:BucketSort 101 5.3 ThePoissonDistribution 101 5.3.1 LimitoftheBinomialDistribution 105 5.4 ThePoissonApproximation 107 5.4.1∗ Example:CouponCollector’sProblem,Revisited 111 5.5 Application:Hashing 113 5.5.1 ChainHashing 113 5.5.2 Hashing:BitStrings 114 5.5.3 BloomFilters 116 5.5.4 BreakingSymmetry 118 5.6 RandomGraphs 119 5.6.1 RandomGraphModels 119 5.6.2 Application:HamiltonianCyclesinRandomGraphs 121 5.7 Exercises 127 5.8 AnExploratoryAssignment 133 6 TheProbabilisticMethod 135 6.1 TheBasicCountingArgument 135 viii

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.