ebook img

Probabilistic Horn abduction and Bayesian networks PDF

61 Pages·2007·0.42 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Probabilistic Horn abduction and Bayesian networks

Probabilistic Horn abduction and Bayesian networks (cid:0) David Poole Department of Computer Science(cid:0) University of British Columbia(cid:0) Vancouver(cid:0) B(cid:1)C(cid:1)(cid:0) Canada V(cid:2)T (cid:3)Z(cid:4) poole(cid:5)cs(cid:1)ubc(cid:1)ca telephone(cid:6) (cid:7)(cid:2)(cid:8)(cid:4)(cid:9) (cid:10)(cid:11)(cid:11) (cid:2)(cid:11)(cid:12)(cid:4) fax(cid:6) (cid:7)(cid:2)(cid:8)(cid:4)(cid:9) (cid:10)(cid:11)(cid:11) (cid:12)(cid:4)(cid:10)(cid:12) September (cid:3)(cid:12)(cid:0) (cid:3)(cid:13)(cid:13)(cid:14) Abstract This paper presents a simple framework for Horn(cid:0)clause abduc(cid:0) tion(cid:1) with probabilities associated with hypotheses(cid:2) The framework incorporates assumptions about the rule base and independence as(cid:0) sumptions amongst hypotheses(cid:2) It is shown how any probabilistic knowledge representable in a discrete Bayesian belief network can be represented in this framework(cid:2) The main contribution is in (cid:3)nding a relationship between logical and probabilistic notions of evidential reasoning(cid:2) This provides a useful representation language in its own right(cid:1) providing a compromise between heuristic and epistemic ad(cid:0) equacy(cid:2) It also shows how Bayesian networks can be extended be(cid:0) yond a propositional language(cid:2) This paper also showshow a language withonly(cid:4)unconditionally(cid:5) independent hypothesescanrepresentany probabilistic knowledge(cid:1) and arguesthat it is better to invent new hy(cid:0) potheses to explain dependence rather than having to worry about dependence in the language(cid:2) (cid:0) Scholar(cid:0) Canadian Institute for Advanced Research(cid:1) (cid:0) Probabilistic Horn abduction and Bayesian networks (cid:1) (cid:0) Introduction Probabilistic Horn Abduction (cid:2)(cid:3)(cid:4)(cid:5) (cid:3)(cid:6)(cid:7) is a framework for logic(cid:8)based abduc(cid:8) tion that incorporates probabilities with assumptions(cid:9) This is being used as a framework for diagnosis (cid:2)(cid:3)(cid:4)(cid:7) that incorporates both pure Prolog (cid:2)(cid:10)(cid:11)(cid:7) and Bayesian Networks (cid:2)(cid:10)(cid:12)(cid:7) as special cases(cid:9) This paper expands on (cid:2)(cid:3)(cid:4)(cid:5) (cid:3)(cid:6)(cid:7) and develops the formal underpinnings of probabilistic Horn abduction(cid:5) shows the strong relationships to other formalisms and argues that it is a good representation language in its own right(cid:9) It can be motivated in a number of di(cid:13)erent ways(cid:14) Determiningwhatisinasystemfromobservations(cid:15)diagnosisandrecogni(cid:8) tion(cid:16) isan importantpart of AI(cid:9)There havebeen manylogic(cid:8)based proposals as to what is a diagnosis (cid:2)(cid:0)(cid:6)(cid:5) (cid:17)(cid:6)(cid:5) (cid:0)(cid:10)(cid:5) (cid:3)(cid:17)(cid:5) (cid:0)(cid:1)(cid:7)(cid:9) One problem with all of these proposals is that for any diagnostic problem of a reasonable size there are far too many logical possibilities to handle(cid:9) For example(cid:5) when considering fault models(cid:2)(cid:0)(cid:3)(cid:5) (cid:3)(cid:17)(cid:7)(cid:5) there is almost always an exponential numberof logical possibilities (cid:15)e(cid:9)g(cid:9)(cid:5) each component could be in one of its normal states or in the unknown state(cid:16)(cid:9) For practical problems(cid:5) many of the logically possible diagnoses are so unlikely that it is not worth considering them(cid:9) There is a problem(cid:5) however(cid:5) in removing the unlikely possibilities a priori (cid:15)those with a low prior probability(cid:16)(cid:14) it may happen that the unlikely occurrence is the actual truth in the world(cid:9) Analysis of the combinatorial explosions would however tend to suggest that we need to take into account probabilities of the diagnoses (cid:2)(cid:0)(cid:10)(cid:5) (cid:3)(cid:11)(cid:5) (cid:10)(cid:3)(cid:7)(cid:5) and not even generate the unlikely diagnoses (cid:15)i(cid:9)e(cid:9)(cid:5) those with a low posterior probability(cid:16)(cid:9) In a di(cid:13)erent strand of research(cid:5) Bayesian networks (cid:2)(cid:10)(cid:12)(cid:7)(cid:5) have proven to be a good representation for the sort of probabilistic independence found in many domains(cid:9) While the independence of Bayesian networks has been expressed in logic (cid:15)e(cid:9)g(cid:9)(cid:5) (cid:2)(cid:10)(cid:7)(cid:16)(cid:5) there has not been a mapping between logical speci(cid:18)cations of knowledge and Bayesian network representations(cid:5) where the logic is not at the meta(cid:8)level to the probabilistic knowledge(cid:9) This paper describes what could be termed as a logic of discrete Bayesian Networks(cid:5) where the logic expresses the object levelknowledge and the independence of Bayesian networks is an emergent property of the representation(cid:9) In the un(cid:8) certaintycommunitythere has also been a need to extend Bayesiannetworks to beyond a propositional language (cid:2)(cid:17)(cid:5) (cid:19)(cid:5) (cid:1)(cid:1)(cid:7)(cid:9) Probabilistic Horn abduction is naturally non(cid:8)propositional(cid:5) and provides a natural extension of Bayesian Probabilistic Horn abduction and Bayesian networks (cid:10) networks to a non(cid:8)propositional language(cid:9) The work presented in this paper should be contrasted with other at(cid:8) tempts to combine logic and probability in very powerful languages (cid:15)e(cid:9)g(cid:9)(cid:5) (cid:2)(cid:10)(cid:7)(cid:16)(cid:9) We are trying to (cid:18)nd the simplest language that is useful for our pur(cid:8) poses(cid:5) rather than combinemanydi(cid:13)erent features onto one framework(cid:9) Our goal in this research is to investigate a simple yet powerful logic(cid:9) The representation proposed in this paper is interesting in its own right as a compromise between epistemic and heuristic adequacy (cid:2)(cid:10)(cid:10)(cid:7)(cid:9) It extends pure Prolog in a simple way to include probabilities(cid:9) While all of the hy(cid:8) potheses are independent(cid:5) by inventing new hypotheses(cid:5) we can represent any probabilistic dependency(cid:9) This simplicity allows us to experiment with a minimalist representation and only extend it when we need to(cid:9) It is inter(cid:8) esting to see how far we can go with a very simple representation language(cid:5) only adding to it when it fails to do what we it want to do(cid:9) (cid:0)(cid:1)(cid:0) A Motivating Example Before we present the language and the assumptions behind the representa(cid:8) tion(cid:5) we (cid:18)rst give an example to show what sorts of things we can represent(cid:9) The example is based on the three cascaded inverters of (cid:2)(cid:0)(cid:3)(cid:7)(cid:9) Figure (cid:0) shows the connections of the inverters(cid:9) in(i1) out(i3) i1 i2 i3 Figure (cid:0)(cid:14) Three cascaded inverters(cid:9) The language is an extension of pure Prolog(cid:9) We can write Prolog(cid:8)like de(cid:18)nite clauses to represent the general knowledge of the domain(cid:5) and the speci(cid:18)c instances known about the particular con(cid:18)guration(cid:14) val(cid:15)out(cid:15)G(cid:16)(cid:0)on(cid:0)T(cid:16)(cid:0) ok(cid:15)G(cid:16)(cid:1)val(cid:15)in(cid:15)G(cid:16)(cid:0)o(cid:0)(cid:0)T(cid:16)(cid:1) Probabilistic Horn abduction and Bayesian networks (cid:3) val(cid:15)out(cid:15)G(cid:16)(cid:0)o(cid:0)(cid:0)T(cid:16) (cid:0) ok(cid:15)G(cid:16)(cid:1)val(cid:15)in(cid:15)G(cid:16)(cid:0)on(cid:0)T(cid:16)(cid:1) val(cid:15)out(cid:15)G(cid:16)(cid:0)V(cid:0)T(cid:16)(cid:0) shorted(cid:15)G(cid:16)(cid:1)val(cid:15)in(cid:15)G(cid:16)(cid:0)V(cid:0)T(cid:16)(cid:1) val(cid:15)out(cid:15)G(cid:16)(cid:0)o(cid:0)(cid:0)T(cid:16) (cid:0) blown(cid:15)G(cid:16)(cid:1) val(cid:15)in(cid:15)G(cid:16)(cid:0)V(cid:0)T(cid:16)(cid:0) conn(cid:15)G(cid:0)(cid:0)G(cid:16) (cid:1)val(cid:15)out(cid:15)G(cid:0)(cid:16)(cid:0)V(cid:0)T(cid:16)(cid:1) conn(cid:15)i(cid:0)(cid:0)i(cid:1)(cid:16)(cid:1) conn(cid:15)i(cid:1)(cid:0)i(cid:10)(cid:16)(cid:1) Here val(cid:15)P(cid:0)V(cid:0)T(cid:16) means that port P has value V at time T(cid:20) in(cid:15)G(cid:16) is the input port of gate G and out(cid:15)G(cid:16) is the output port of gate G(cid:9) ok(cid:15)G(cid:16) means G is working properly(cid:20) shorted(cid:15)G(cid:16) means that G is shorted and acts as a wire(cid:20) and blown(cid:15)G(cid:16) means that G always outputs the value o(cid:0)(cid:9) Thelanguage alsohas a(cid:21)disjointdeclaration(cid:22)that de(cid:18)nesa setofdisjoint and covering hypotheses that have probabilities associated with them(cid:14) disjoint(cid:15)(cid:2)ok(cid:15)G(cid:16) (cid:14) (cid:11)(cid:1)(cid:12)(cid:17)(cid:0)shorted(cid:15)G(cid:16) (cid:14) (cid:11)(cid:1)(cid:11)(cid:10)(cid:0)blown(cid:15)G(cid:16) (cid:14) (cid:11)(cid:1)(cid:11)(cid:1)(cid:7)(cid:16)(cid:1) disjoint(cid:15)(cid:2)val(cid:15)in(cid:15)i(cid:0)(cid:16)(cid:0)on(cid:0)T(cid:16)(cid:14) (cid:11)(cid:1)(cid:17)(cid:0)val(cid:15)in(cid:15)i(cid:0)(cid:16)(cid:0)o(cid:0)(cid:0)T(cid:16) (cid:14) (cid:11)(cid:1)(cid:17)(cid:7)(cid:16)(cid:1) The (cid:18)rst gives the prior probabilities of the states of gates(cid:9) The second gives the prior probabilities of the inputs to the (cid:18)rst gate(cid:9) In our language(cid:5) di(cid:13)er(cid:8) ent instances of disjoint declarations are probabilistically (cid:15)unconditionally(cid:16) independent(cid:5) and so we have stated that the gates break independently(cid:5) and that the values of the input to gate i(cid:0) is independent of the states of the system(cid:9) The sorts of things that we can ask(cid:5) and for which we have given enough information to compute include(cid:14) (cid:2) What is the probability that gate i(cid:1) is ok given that the input to i(cid:0) is o(cid:0) and the output of i(cid:10) is o(cid:0) at time t(cid:0)(cid:23) P(cid:15)ok(cid:15)i(cid:1)(cid:16)jval(cid:15)in(cid:15)i(cid:0)(cid:16)(cid:0)o(cid:0)(cid:0)t(cid:0)(cid:16)(cid:1)val(cid:15)out(cid:15)i(cid:10)(cid:16)(cid:0)o(cid:0)(cid:0)t(cid:0)(cid:16)(cid:16) (cid:15)The answer is (cid:11)(cid:9)(cid:6)(cid:19)(cid:16)(cid:9) (cid:2) If the input of i(cid:0) were on what is the probability that the output of i(cid:10) will be o(cid:0)(cid:23) P(cid:15)val(cid:15)out(cid:15)i(cid:10)(cid:16)(cid:0)o(cid:0)(cid:0)t(cid:0)(cid:16)jval(cid:15)in(cid:15)i(cid:0)(cid:16)(cid:0)on(cid:0)t(cid:0)(cid:16)(cid:16) (cid:15)The answer is (cid:11)(cid:9)(cid:4)(cid:12)(cid:12)(cid:16)(cid:9) Probabilistic Horn abduction and Bayesian networks (cid:17) (cid:2) What was the probability that the input to i(cid:0) was on at time t(cid:1) given that the output to i(cid:1) was o(cid:13) at time t(cid:1) and given that the output of i(cid:10) was o(cid:13) and the input of i(cid:0) was o(cid:13) at time t(cid:0)(cid:23) P(cid:15)val(cid:15)in(cid:15)i(cid:0)(cid:16)(cid:0)on(cid:0)t(cid:1)(cid:16)jval(cid:15)out(cid:15)i(cid:1)(cid:16)(cid:0)o(cid:0)(cid:0)t(cid:1)(cid:16)(cid:1)val(cid:15)out(cid:15)i(cid:10)(cid:16)(cid:0)o(cid:0)(cid:0)t(cid:0)(cid:16)(cid:1)val(cid:15)in(cid:15)i(cid:0)(cid:16)(cid:0)o(cid:0)(cid:0)t(cid:0)(cid:16)(cid:16) (cid:15)the answer is (cid:11)(cid:9)(cid:17)(cid:17)(cid:16)(cid:9) Each of these answers is computedin termsof explanations(cid:5) namelyargu(cid:8) mentswith premisesfrom the possible hypotheses(cid:9) We assume independence amongst the hypotheses so that the prior probability of an explanation is ob(cid:8) tained by multiplyingthe probabilities of the hypotheses in the explanation(cid:9) For example(cid:5) the explanations of the observation val(cid:15)in(cid:15)i(cid:0)(cid:16)(cid:0)o(cid:0)(cid:0)t(cid:0)(cid:16) (cid:1) val(cid:15)out(cid:15)i(cid:10)(cid:16)(cid:0)o(cid:0)(cid:0)t(cid:0)(cid:16)(cid:5) together with their prior probability are(cid:14) Explanation(cid:14) (cid:2)val(cid:15)in(cid:15)i(cid:0)(cid:16)(cid:0)o(cid:0)(cid:0)t(cid:0)(cid:16)(cid:0)ok(cid:15)i(cid:10)(cid:16)(cid:0)ok(cid:15)i(cid:1)(cid:16)(cid:0)shorted(cid:15)i(cid:0)(cid:16)(cid:7) Prior (cid:24) (cid:11)(cid:9)(cid:11)(cid:0)(cid:10)(cid:17)(cid:3) Explanation(cid:14) (cid:2)val(cid:15)in(cid:15)i(cid:0)(cid:16)(cid:0)o(cid:0)(cid:0)t(cid:0)(cid:16)(cid:0)ok(cid:15)i(cid:10)(cid:16)(cid:0)shorted(cid:15)i(cid:1)(cid:16)(cid:0)ok(cid:15)i(cid:0)(cid:16)(cid:7) Prior (cid:24) (cid:11)(cid:9)(cid:11)(cid:0)(cid:10)(cid:17)(cid:3) Explanation(cid:14) (cid:2)val(cid:15)in(cid:15)i(cid:0)(cid:16)(cid:0)o(cid:0)(cid:0)t(cid:0)(cid:16)(cid:0)shorted(cid:15)i(cid:10)(cid:16)(cid:0)ok(cid:15)i(cid:1)(cid:16)(cid:0)ok(cid:15)i(cid:0)(cid:16)(cid:7) Prior (cid:24) (cid:11)(cid:9)(cid:11)(cid:0)(cid:10)(cid:17)(cid:3) Explanation(cid:14) (cid:2)val(cid:15)in(cid:15)i(cid:0)(cid:16)(cid:0)o(cid:0)(cid:0)t(cid:0)(cid:16)(cid:0)blown(cid:15)i(cid:10)(cid:16)(cid:7) Prior (cid:24) (cid:11)(cid:9)(cid:11)(cid:0)(cid:11)(cid:11)(cid:11) Explanation(cid:14) (cid:2)val(cid:15)in(cid:15)i(cid:0)(cid:16)(cid:0)o(cid:0)(cid:0)t(cid:0)(cid:16)(cid:0)ok(cid:15)i(cid:10)(cid:16)(cid:0)ok(cid:15)i(cid:1)(cid:16)(cid:0)blown(cid:15)i(cid:0)(cid:16)(cid:7) Prior (cid:24) (cid:11)(cid:9)(cid:11)(cid:11)(cid:12)(cid:11)(cid:1)(cid:17) Explanation(cid:14) (cid:2)val(cid:15)in(cid:15)i(cid:0)(cid:16)(cid:0)o(cid:0)(cid:0)t(cid:0)(cid:16)(cid:0)shorted(cid:15)i(cid:10)(cid:16)(cid:0)blown(cid:15)i(cid:1)(cid:16)(cid:7) Prior (cid:24) (cid:11)(cid:9)(cid:11)(cid:11)(cid:11)(cid:10)(cid:11)(cid:11)(cid:11) Explanation(cid:14) (cid:2)val(cid:15)in(cid:15)i(cid:0)(cid:16)(cid:0)o(cid:0)(cid:0)t(cid:0)(cid:16)(cid:0)shorted(cid:15)i(cid:10)(cid:16)(cid:0)shorted(cid:15)i(cid:1)(cid:16)(cid:0)shorted(cid:15)i(cid:0)(cid:16)(cid:7) Prior (cid:24) (cid:11)(cid:9)(cid:11)(cid:11)(cid:11)(cid:11)(cid:0)(cid:10)(cid:17)(cid:11) Explanation(cid:14) (cid:2)val(cid:15)in(cid:15)i(cid:0)(cid:16)(cid:0)o(cid:0)(cid:0)t(cid:0)(cid:16)(cid:0)shorted(cid:15)i(cid:10)(cid:16)(cid:0)shorted(cid:15)i(cid:1)(cid:16)(cid:0)blown(cid:15)i(cid:0)(cid:16)(cid:7) Prior (cid:24) (cid:11)(cid:9)(cid:11)(cid:11)(cid:11)(cid:11)(cid:11)(cid:12)(cid:11)(cid:11)(cid:11) Probabilistic Horn abduction and Bayesian networks (cid:19) By the way the knowledge base was constructed(cid:5) these explanations are disjoint and covering(cid:5) and so we can compute the prior probability of val(cid:15)in(cid:15)i(cid:0)(cid:16)(cid:0)o(cid:0)(cid:0)t(cid:0)(cid:16)(cid:1)val(cid:15)out(cid:15)i(cid:10)(cid:16)(cid:0)o(cid:0)(cid:0)t(cid:0)(cid:16)(cid:16) by summing the probabilities of these explanations(cid:5) which here is (cid:11)(cid:9)(cid:11)(cid:17)(cid:12)(cid:12)(cid:19)(cid:9) (cid:1) Probabilistic Horn Abduction In this section we develop the language(cid:5) the assumptions behind it and a (cid:21)semantics(cid:22) of the language in termsof abduction(cid:9) A more formal semantics is provided in Appendix A(cid:9) The language is designed to be usable and does not allow us to state what cannot be computedina straight forward manner(cid:9) The initial language is translated into an abductive framework with a number of assumptions about the knowledge base(cid:9) The appendix gives a more formal model(cid:8)theoretic semantics and demonstrates the equivalence between the two(cid:9) (cid:2)(cid:1)(cid:0) The Probabilistic Horn abduction language Our language uses the Prolog conventions (cid:2)(cid:19)(cid:3)(cid:7)(cid:14) De(cid:0)nition (cid:1)(cid:2)(cid:3) A termis eithera variable (cid:15)starting with an upper case let(cid:8) ter(cid:16)(cid:5)aconstant(cid:15)startingwithalowercaseletter(cid:16)orisoftheformf(cid:15)t(cid:0)(cid:0)(cid:3)(cid:3)(cid:3)(cid:0)tn(cid:16) where f is a function symbol (cid:15)starting with a lower case letter(cid:16) and each ti is a term(cid:9) An atomic symbol (cid:15)atom(cid:16) is of the form p or p(cid:15)t(cid:0)(cid:0)(cid:3)(cid:3)(cid:3)(cid:0)tn(cid:16) where p is a predicate symbol (cid:15)starting with a lower case letter(cid:16) and each ti is a term(cid:9) De(cid:0)nition (cid:1)(cid:2)(cid:1) A de(cid:0)nite clause is of the form(cid:14) a(cid:1) or a (cid:0) a(cid:0) (cid:1) (cid:1)(cid:1)(cid:1)(cid:1) an(cid:1) where a and each ai are atomic symbols(cid:9) De(cid:0)nition (cid:1)(cid:2)(cid:4) A disjoint declaration is of the form disjoint(cid:15)(cid:2)h(cid:0) (cid:14) p(cid:0)(cid:0)(cid:3)(cid:3)(cid:3)(cid:0)hn (cid:14) pn(cid:7)(cid:16)(cid:1) where the hi are atoms(cid:5) and the pi are real numbers (cid:11) (cid:4) pi (cid:4) (cid:0) such that p(cid:0) (cid:25) (cid:3)(cid:3)(cid:3) (cid:25) pn (cid:24) (cid:0)(cid:9) Any variable appearing in one hi must appear in all of the hj (cid:15)i(cid:9)e(cid:9)(cid:5) the hi share the same variables(cid:16)(cid:9) The hi will be referred to as hypotheses or assumables(cid:9) Probabilistic Horn abduction and Bayesian networks (cid:6) De(cid:0)nition (cid:1)(cid:2)(cid:5) A probabilistic Horn abduction theory (cid:15)which will be referred to as a (cid:21)theory(cid:22)(cid:16) is a collection of de(cid:18)nite clauses and disjoint dec(cid:8) larations such that if a ground atom h is an instance of a hypothesis in one disjoint declaration(cid:5) then it is not an instance of another hypothesis in any of the disjoint declarations(cid:9) Given theory T(cid:5) we de(cid:18)ne FT the facts(cid:5) is the set of de(cid:18)nite clauses in T together with the clauses of the form false (cid:0) hi (cid:1)hj where hi and hj both appear in the same disjoint declaration in T(cid:5) and (cid:0) i (cid:5)(cid:24) j(cid:9) Let FT be the set of ground instances of elements of FT(cid:9) HT the hypotheses(cid:5) the set of hi that appears in some disjoint declaration (cid:0) in T(cid:9) Let HT be the set of ground instances of elements of HT(cid:9) (cid:0) (cid:0) (cid:0) PT is a function HT (cid:6)(cid:7) (cid:2)(cid:11)(cid:0)(cid:0)(cid:7)(cid:9) P(cid:15)hi(cid:16) (cid:24) pi where hi is a ground instance of (cid:0) hypothesis hi(cid:5) and hi (cid:14) pi is in a disjoint declaration in T(cid:9) P(cid:15)hi(cid:16) will (cid:0) be the prior probability of hi(cid:9) Where T is understood from context(cid:5) we omit the subscript(cid:9) The disjoint declarations allow a very restricted form of integrity con(cid:8) straints (cid:2)(cid:1)(cid:17)(cid:7)(cid:9) It allow binary integrity constraints (cid:15)the conjunction of two hypotheses is false(cid:16) such that the ground instances of hypotheses formmutu(cid:8) ally exclusive and covering groupings that correspond to random variables(cid:9) A theory will de(cid:18)ne a set of represented atoms that are a subset of the atoms of T(cid:9) The represented atoms will often be not listed explicitly(cid:5) but will be left implicit(cid:15)they will typicallybe instances of hypotheses and heads of clauses(cid:16)(cid:9) The represented atoms are those about which the theory can answer questions(cid:9) Questions about atoms not in the represented atoms will be beyond the scope of the theory(cid:9) The theory is not expected to be able to answer queries outside of its scope(cid:9) (cid:2)(cid:1)(cid:2) Abduction We (cid:18)rst give the language an abductive characterisation(cid:5) using the normal de(cid:18)nition of the de(cid:18)nite clauses(cid:9) This is used to make explicit our assump(cid:8) tions and to build the theory in a natural manner(cid:9) In Appendix A(cid:5) we give Probabilistic Horn abduction and Bayesian networks (cid:4) a model theoretic characterisation that incorporates our assumptions(cid:5) and show the equivalence of the formulations(cid:9) The formulation of abduction used is a simpli(cid:18)ed form (cid:2)(cid:0)(cid:4)(cid:7) of Theorist (cid:2)(cid:17)(cid:0)(cid:5) (cid:3)(cid:10)(cid:7)(cid:9) It is simpli(cid:18)ed in being restricted to Horn clauses(cid:9) This can also be seen as a generalisation of an ATMS (cid:15)with prede(cid:18)ned nogoods(cid:16) (cid:2)(cid:17)(cid:12)(cid:7) to be (cid:0) non(cid:8)propositional (cid:9) An abductive scheme is a pair hF(cid:0)Hi where F is a set of Horn clauses(cid:9) Variables in F are implicitlyuniversally quanti(cid:8) (cid:0) (cid:18)ed(cid:9) Let F be the set of ground instances of elements of F(cid:9) H is a setof (cid:15)possibly open(cid:16) atoms(cid:5)calledthe(cid:21)assumables(cid:22) or the(cid:21)possible (cid:0) hypotheses(cid:22)(cid:9) Let H be the set of ground instances of elements of H(cid:9) De(cid:0)nition (cid:1)(cid:2)(cid:6) (cid:2)(cid:17)(cid:0)(cid:5) (cid:3)(cid:1)(cid:7) If g is a closed formula(cid:5) an explanation of g from (cid:0) hF(cid:0)Hi is a set D of elements of H such that (cid:2) F (cid:8)D j(cid:24) g and (cid:2) F (cid:8)D (cid:5)j(cid:24) false(cid:9) The (cid:18)rst condition says that D is su(cid:26)cient to imply g(cid:5) and the second says that D is possible(cid:9) De(cid:0)nition (cid:1)(cid:2)(cid:7) A minimal explanation of g is an explanation of g such that no strict subset is an explanation of g(cid:9) (cid:2)(cid:1)(cid:3) Assumptions about the rule base In order to be able to simply interpret our rules probabilistically we make some assumptions about the rules and some probabilistic independence as(cid:8) sumptions about the hypotheses(cid:9) The (cid:18)rst assumption is syntactic(cid:5) about the relationship between hy(cid:8) potheses and rules(cid:14) Assumption (cid:1)(cid:2)(cid:8) Thereareno rules inF whose head uni(cid:18)eswitha member of H(cid:9) (cid:0) A main di(cid:2)erence is in the philosophy of use(cid:1) We assume that the Horn clauses are representing the objectlevelknowledge(cid:0)rather than(cid:0)asinanATMS(cid:0)actingasabackend of a problemsolver (cid:3)(cid:4)(cid:4)(cid:5)(cid:1) Probabilistic Horn abduction and Bayesian networks (cid:12) This does not seem to be a very severe restriction(cid:5) in practice(cid:9) It says that we do not want rules to implya hypothesis(cid:9) Presumably(cid:5)if we had rules for h(cid:5) the only reason that we would want to makeh a hypothesis is if it was possible that h just happens to be true (cid:15)without any other (cid:21)cause(cid:22)(cid:16)(cid:9) In this case we can replace h in H by the hypothesis h happens to be true and add the rule h (cid:0) h happens to be true (cid:0) Assumption (cid:1)(cid:2)(cid:9) (cid:15)acyclicity (cid:2)(cid:0)(cid:7)(cid:16) If F is the set of ground instances of ele(cid:8) ments of F(cid:5) it is possible to assign a natural number to every ground atom (cid:0) such that for every rule in F the atoms in the body of the rule are strictly less than the atom in the head(cid:9) This assumption is described as natural by Apt and Bezem (cid:2)(cid:0)(cid:7)(cid:9) It is a generalisation of the hierarchicalconstraint of Clark (cid:2)(cid:4)(cid:7)(cid:9) It impliesthat there are no in(cid:18)nite chains when backchaining from any ground goal(cid:9) This does not restrictrecursion(cid:5) but does meanthat allrecursion mustbe wellfounded(cid:9) These assumptions are made implicitly in (cid:2)(cid:3)(cid:10)(cid:7)(cid:5) are explicit in (cid:2)(cid:12)(cid:7) (cid:15)who make the hierarchical constraint rather than the acyclic constraint(cid:16)(cid:5) but are relaxed in (cid:2)(cid:1)(cid:3)(cid:7)(cid:9) When using abduction we often assume that the explanations are cover(cid:8) ing(cid:9) This can be a valid assumption if we have anticipated all eventualities(cid:5) and the observations are within the domain of the expected observations (cid:15)usually if this assumption is violated there are no explanations(cid:16)(cid:9) This is also supported by recent attempts at a completion semantics for abduction (cid:2)(cid:3)(cid:10)(cid:5) (cid:12)(cid:5) (cid:1)(cid:3)(cid:7)(cid:9) The results show how abduction can be considered as deduction on the (cid:21)closure(cid:22) of the knowledge base that includes statements that the given causes are the only causes(cid:9) We make this assumption explicit here(cid:14) (cid:0) Assumption (cid:1)(cid:2)(cid:10) The rules in F for every ground non(cid:8)hypothesis repre(cid:8) sented atom are covering(cid:9) (cid:0) That is(cid:5) if the rules for a in F are a (cid:0) B(cid:0) a (cid:0) B(cid:1) (cid:9) (cid:9) (cid:9) a (cid:0) Bm Probabilistic Horn abduction and Bayesian networks (cid:0)(cid:11) if a is true(cid:5) one of the Bi is true(cid:9) The completion of a is a (cid:9) B(cid:0) (cid:10)(cid:3)(cid:3)(cid:3)(cid:10)Bn Thus the covering assumption (cid:1)(cid:9)(cid:12) says that Clark(cid:27)s completion (cid:2)(cid:4)(cid:7) is valid for every non(cid:8)assumable(cid:9) If the rules for a are not covering(cid:5) we create a new hypothesis a is true for some other reason and add the rule a (cid:0) a is true for some other reason(cid:1) Lemma (cid:1)(cid:2)(cid:3)(cid:11) (cid:2)(cid:12)(cid:7) Under assumptions (cid:1)(cid:2)(cid:3)(cid:4) (cid:1)(cid:2)(cid:5) and (cid:1)(cid:2)(cid:6)(cid:4) if expl(cid:15)g(cid:0)T(cid:16) is the (cid:0) set of all minimal explanations of g from hFT(cid:0)HTi(cid:4) and comp(cid:15)T(cid:16) is FT aug(cid:7) mented with the completion of every ground instance of every non(cid:7)assumable (cid:8)including Clark(cid:9)s equational theory (cid:10)(cid:5)(cid:11)(cid:12)(cid:4) then (cid:0) (cid:3) comp(cid:15)T(cid:16) j(cid:24) g (cid:9) ei (cid:2) (cid:1) ei(cid:1)expl(cid:2)g(cid:0)T(cid:3) A The next assumption has to do with the status of explanations (cid:0) Assumption (cid:1)(cid:2)(cid:3)(cid:3) The bodies of the rules in F for an atom are mutually exclusive(cid:9) Giventhe aboverules for athis meansthat Bi(cid:1)Bj is always falsefor each i (cid:5)(cid:24) j(cid:9) To ensure that this assumption holds we can add extra conditions to the rules(cid:9) See section (cid:17)(cid:9) Note that(cid:5) whereas assumptions (cid:1)(cid:9)(cid:6) and (cid:1)(cid:9)(cid:4) are syntactic assumptions about the theory that can be automatically checked(cid:5) assumptions (cid:1)(cid:9)(cid:12) and (cid:1) (cid:1)(cid:9)(cid:0)(cid:0) are statements about the world(cid:5) and not about the knowledge base (cid:9) We do not require FT j(cid:24) (cid:11)(cid:15)Bi (cid:1) Bj(cid:16)(cid:9) The language is not powerful enough to state such constraints(cid:9) For example(cid:5) it may be the case that the value (cid:1) Thereis(cid:0)however(cid:0)asyntacticconditionthatcanbeusedtocheckwhetherassumption (cid:6)(cid:1)(cid:4)(cid:4) has been violated(cid:1) This is when we can derive the bodies of two rules for an atom fromasetofassumptionsthatarenotinconsistent(cid:1) Forexample(cid:0)iffa(cid:0)nagandfb(cid:0)nbgare disjoint and covering sets of assumptions (cid:7)and so a and b are independent by assumption (cid:6)(cid:1)(cid:4)(cid:8)(cid:9)(cid:0)andwehaverules fc(cid:1)a(cid:0)c(cid:1)bg(cid:0)then weknowthe disjointbodies assumption(cid:6)(cid:1)(cid:4)(cid:4) has been violated(cid:0) as a and b cannot be both exclusive and independent(cid:1)

Description:
will make this interpretation di cult. allow us to build e cient implementations, and to avoid di cult to interpret .. holds(alive S) holds(loaded S):.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.