Zijun Cao · Yu Wang Dianqing Li Probabilistic Approaches for Geotechnical Site Characterization and Slope Stability Analysis Probabilistic Approaches for Geotechnical Site Characterization and Slope Stability Analysis Zijun Cao Yu Wang Dianqing Li (cid:129) (cid:129) Probabilistic Approaches for Geotechnical Site Characterization and Slope Stability Analysis 123 Zijun Cao DianqingLi State Key Laboratoryof Water Resources State Key Laboratoryof Water Resources andHydropowerEngineering Science andHydropowerEngineering Science WuhanUniversity WuhanUniversity Wuhan, Hubei Wuhan, Hubei China China YuWang City University of HongKong Hong Kong China Jointlypublished with Zhejiang University Press ISBN978-3-662-52912-6 ISBN978-3-662-52914-0 (eBook) DOI 10.1007/978-3-662-52914-0 LibraryofCongressControlNumber:2016944341 ©ZhejiangUniversityPressandSpringer-VerlagBerlinHeidelberg2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublishers,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublishers,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis book are believed to be true and accurate at the date of publication. Neither the publishers nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringer-VerlagGmbHBerlinHeidelberg Preface In the last few decades, reliability-based design (RBD) approaches/codes and probabilistic analysis methods, such as probabilistic slope stability analysis with MonteCarlosimulation(MCS),havebeendevelopedforgeotechnicalstructuresto deal rationally with various uncertainties (e.g., inherent spatial variability of soils and uncertainties arising during geotechnical site characterization) in geotechnical engineering. Applications of the RBD approaches/codes and probabilistic analysis methods in turn call for the needs of probabilistic site characterization, which describes probabilistically soil properties and underground stratigraphy based on both prior knowledge (i.e., site information available prior to the project) and project-specific test results. How to combine systematically prior knowledge and project-specifictestresultsinaprobabilisticmanner,however,isachallengingtask. This problem is further complicated by the inherent spatial variability of soils, uncertainties arising during site characterization and the fact that geotechnical site characterization generally only provides a limited number of project-specific test data. This book focuses on probabilistic characterization of uncertainties in geotech- nicalpropertiesandtheirpropagationinslopestabilityanalysisusingMCS.Several probabilistic approaches are developed and presented in this book for probabilistic site characterization and reliability analysis of slope stability. These approaches effectively tackle the following unresolved issues in geotechnical risk and relia- bility,whichhampertheapplicationsofprobabilisticanalysisanddesignapproach in geotechnical practice: 1. How to determine project-specific statistics and probability distributions of geotechnicalpropertiesbasedonbothpriorknowledgeandalimitednumberof project-specific test data obtained during geotechnical site characterization? (Chaps. 3–6) 2. Howtoexpressengineeringjudgmentsinaquantitativeandtransparentmanner during geotechnical site characterization? (Chap. 4) v vi Preface 3. How to delineate underground stratigraphy (including number and boundaries ofsoillayers)probabilistically usingalimited numberofsiteobservationdata? (Chap. 6) 4. How to efficiently incorporate various geotechnical-related uncertainties (e.g., uncertainties in geotechnical properties) into slope stability analysis using MCS? (Chap. 7) 5. Howtoshedlightontherelativecontributionsofvariousuncertaintiestoslope failure probability based on MCS? (Chap. 8) 6. How to make MCS-based probabilistic analysis approach of slope stability accessible to geotechnical practitioners who are usually unfamiliar with prob- ability theory and statistics? (Chaps. 7 and 8) As far as the authors are aware, this is the first book to revisit geotechnical site characterization from a probabilistic point of view and provide rational tools to probabilistically characterize geotechnical properties and underground stratigraphy using limited information obtained from a specific site. This book also develops efficient MCS approaches for slope stability analysis and implements these approaches in a commonly available spreadsheet environment by a package of worksheets and functions/add-in in Excel. These approaches and the software packagesarereadilyavailabletogeotechnicalpractitionersandalleviatethemfrom reliability computational algorithms. The authors gratefully acknowledge the financial support by the National Science Fund for Distinguished Young Scholars (ProjectNo.51225903),theNationalNaturalScienceFoundationofChina(Project Nos. 51329901, 51409196, 51579190, 51528901), the National Program on Key Research Project (2016YFC0800208), and the Natural Science Foundation of Hubei Province of China (Project No. 2014CFA001). Theauthorswouldliketoexpressmyheartfeltgratitudetowardmanycolleagues who give invaluable advice and insightful comments on this book. We would also thankMissShuoZhengforherassistanceinwordprocessingofthemanuscriptand Mr.FupingZhang,Mr.JianHe,Mr.XinLiu,andMs.MiTianfortheirhelponthe proofread of the manuscript. Last but not least, the authors’ deep gratitude goes to theirfamiliesfortheirlovingconsiderationandcontinuoussupporttoencourageus to finish this book. Wuhan, China Zijun Cao Hong Kong, China Yu Wang Wuhan, China Dianqing Li March 2016 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Uncertainties in Soil Properties . . . . . . . . . . . . . . . . . . 1 1.1.2 Probabilistic Analysis of Geotechnical Structures. . . . . . 1 1.1.3 Reliability-Based Design of Geotechnical Structures. . . . 2 1.1.4 Geotechnical Site Characterization. . . . . . . . . . . . . . . . 3 1.2 Objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Uncertainty Propagation During Geotechnical Site Characterization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2 Bayesian Framework for Geotechnical Site Characterization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.3 Prior Knowledge and Prior Distribution . . . . . . . . . . . . 5 1.2.4 Probabilistic Site Characterization Using Limited Site Observation Data. . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.5 Probabilistic Site Characterization Using a Large Number of Site Observation Data . . . . . . . . . . . . . . . . 6 1.2.6 Probabilistic Slope Stability Analysis Using Subset Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.7 Probabilistic Failure Analysis of Slope Stability. . . . . . . 7 1.3 Layout of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 Geotechnical Site Characterization. . . . . . . . . . . . . . . . . . . . . . 11 2.1.1 Desk Study and Site Reconnaissance . . . . . . . . . . . . . . 11 2.1.2 In Situ Investigation. . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.3 Laboratory Testing. . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.4 Interpretation of Observation Data and Inferring the Site Subsurface Conditions . . . . . . . . . . . . . . . . . . 15 2.1.5 Challenges in Geotechnical Site Characterization. . . . . . 16 vii viii Contents 2.2 Uncertainties in Soil Properties . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1 Inherent Variability . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.2 Measurement Errors. . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.3 Statistical Uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.4 Transformation Uncertainties. . . . . . . . . . . . . . . . . . . . 24 2.2.5 Uncertainty Propagation . . . . . . . . . . . . . . . . . . . . . . . 26 2.3 Bayesian Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.1 Bayesian Mathematical Framework . . . . . . . . . . . . . . . 27 2.3.2 Prior Distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.3 Likelihood Function. . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.4 Posterior Distribution. . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.5 Updating the Probability of an Event . . . . . . . . . . . . . . 33 2.4 National Geotechnical Experimentation Site (NGES) at Texas A&M University. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.5 Probabilistic Slope Stability Analysis. . . . . . . . . . . . . . . . . . . . 37 2.5.1 First-Order Second-Moment Method (FOSM) . . . . . . . . 38 2.5.2 First-Order Reliability Method (FORM) . . . . . . . . . . . . 38 2.5.3 Direct Monte Carlo Simulation (Direct MCS) . . . . . . . . 39 2.5.4 Subset Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Appendix 2.1: Several Empirical Correlations Reported by Kulhawy and Mayne (1990). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3 Bayesian Framework for Geotechnical Site Characterization. . . . . . 53 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.2 Uncertainty Propagation During Geotechnical Site Characterization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3 Uncertainty Modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3.1 Inherent Spatial Variability . . . . . . . . . . . . . . . . . . . . . 55 3.3.2 Transformation Uncertainty. . . . . . . . . . . . . . . . . . . . . 56 3.4 Bayesian Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.5 Probability Distribution of the Design Soil Property. . . . . . . . . . 58 3.6 The Most Probable Number of Soil Layers. . . . . . . . . . . . . . . . 58 3.6.1 Bayesian Model Class Selection Method. . . . . . . . . . . . 58 3.6.2 Calculation of the Evidence. . . . . . . . . . . . . . . . . . . . . 59 3.6.3 Calculation of Prior Probability. . . . . . . . . . . . . . . . . . 59 3.6.4 Calculation of Probability Density Function of Site Observation Data. . . . . . . . . . . . . . . . . . . . . . . 60 3.7 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4 Quantification of Prior Knowledge Through Subjective Probability Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2 Uncertainties in Prior Knowledge. . . . . . . . . . . . . . . . . . . . . . . 64 Contents ix 4.3 Subjective Probability Assessment Framework (SPAF). . . . . . . . 64 4.4 Specification of Assessment Objectives. . . . . . . . . . . . . . . . . . . 66 4.5 Collection of Relevant Information and Preliminary Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.6 Synthesis of the Evidence. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.6.1 Evaluation of the Strength of Evidence. . . . . . . . . . . . . 69 4.6.2 Evaluation of the Weight of Evidence . . . . . . . . . . . . . 70 4.6.3 Assembling the Evidence and Statistical Analysis . . . . . 71 4.6.4 Reassembling the Relevant Evidence for Each Sub-objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.7 Numerical Assignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.7.1 Equivalent Lottery Method . . . . . . . . . . . . . . . . . . . . . 72 4.7.2 Verbal Descriptors of the Likelihood . . . . . . . . . . . . . . 74 4.7.3 Implementation of the Equivalent Lottery Method . . . . . 75 4.7.4 Prior Distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.8 Confirmation of Assessment Outcomes. . . . . . . . . . . . . . . . . . . 76 4.9 Scenario I: Uninformative Prior Knowledge . . . . . . . . . . . . . . . 77 4.9.1 Assessment Objectives. . . . . . . . . . . . . . . . . . . . . . . . 77 4.9.2 Relevant Information and Prior Uncertain Estimates. . . . 78 4.9.3 Strength and Weight of the Evidence and Statistical Analysis. . . . . . . . . . . . . . . . . . . . . . . . 78 4.9.4 Results of Subjective Probability Assessment . . . . . . . . 80 4.9.5 Final Confirmation. . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.10 Scenario II: Informative Prior Knowledge. . . . . . . . . . . . . . . . . 84 4.10.1 Assessment Objectives. . . . . . . . . . . . . . . . . . . . . . . . 84 4.10.2 Relevant Information and Prior Uncertain Estimates. . . . 84 4.10.3 Strength and Weight of the Evidence and Statistical Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.10.4 Results of Subjective Probability Assessment . . . . . . . . 89 4.10.5 Final Confirmation. . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.11 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Appendix 4.1: Questionnaire for Implementing the Equivalent Lottery Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Questionnaire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5 Probabilistic Characterization of Young’s Modulus of Soils Using Standard Penetration Tests. . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.2 Uncertainty Modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.2.1 Inherent Variability . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.2.2 Transformation Uncertainty. . . . . . . . . . . . . . . . . . . . . 98 5.3 Bayesian Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 x Contents 5.4 Probability Density Function of Undrained Young’s Modulus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.5 Markov Chain Monte Carlo Simulation and Equivalent Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.5.1 Metropolis–Hastings (MH) Algorithm. . . . . . . . . . . . . . 102 5.5.2 Equivalent Samples . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.6 Implementation Procedures. . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.7 Illustrative Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.7.1 Equivalent Samples . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.7.2 Probability Distribution of Undrained Young’s Modulus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.7.3 Estimates of the Mean, Standard Deviation, and Characteristic Value. . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.8 Sensitivity Study on Project-Specific Test Data . . . . . . . . . . . . . 111 5.8.1 Effect of Data Quantity on the Mean of ln(Eu). . . . . . . . 113 5.8.2 Effect of Data Quantity on the Standard Deviation of ln(Eu). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.9 Sensitivity Study on Prior Knowledge . . . . . . . . . . . . . . . . . . . 115 5.9.1 Effect of the Ranges of Uniform Prior Distributions. . . . 117 5.9.2 Effect of Different Types of Prior Distributions . . . . . . . 119 5.10 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6 Probabilistic Site Characterization Using Cone Penetration Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.2 Random Field Modeling of Inherent Spatial Variability . . . . . . . 124 6.3 Regression Between Cone Tip Resistance and Effective Friction Angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.4 Bayesian System Identification . . . . . . . . . . . . . . . . . . . . . . . . 127 6.5 Posterior Knowledge and Boundaries of Statistically Homogenous Layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.5.1 Posterior Knowledge on Model Parameters. . . . . . . . . . 129 6.5.2 The Most Probable Thicknesses and Boundaries of Statistically Homogenous Layers . . . . . . . . . . . . . . . 130 6.6 The Most Probable Number of Layers . . . . . . . . . . . . . . . . . . . 130 6.6.1 Calculation of the Evidence for Each Model Class. . . . . 131 6.7 Implementation Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.8 Illustrative Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.8.1 The Most Probable Number of Sand Layers . . . . . . . . . 135 6.8.2 The Most Probable Thicknesses or Boundaries . . . . . . . 136 6.8.3 The Posterior Knowledge on Model Parameters. . . . . . . 137 6.9 Sensitivity Study on Confidence Level of Prior Knowledge. . . . . 138 6.9.1 Effect on the Most Probable Number of Sand Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140