ebook img

Prioritizing Default Logic: Abridged Report PDF

17 Pages·2011·0.11 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Prioritizing Default Logic: Abridged Report

Prioritizing Default Logic: Abridged Report GerhardBrewka andThomasEiter (cid:0) (cid:2) Institutfu¨rInformatik,AbteilungIntelligenteSysteme,Universita¨tLeipzig (cid:0) Augustusplatz9/10,D-04109Leipzig,Germany Email:[email protected] Institutfu¨rInformatik,Justus-Liebig-Universita¨tGießen (cid:2) Arndtstraße2,D-35392Gießen,Germany Email:[email protected] Abstract. Anumber ofprioritizedvariants ofReiter’sdefault logichave been describedintheliterature.Inthispaper,weintroducetwonaturalprinciplesfor preference handling and show that all existing approaches fail to satisfy them. Wedevelopanewapproachwhichdoesnotsufferfromtheseshortcomings.We startwiththesimplestcase,supernormaldefaulttheories,wherepreferencesare handledinastraightforwardmanner.Thegeneralizationtoprerequisite-freede- faulttheoriesisbasedonanadditionalfixedpointconditionforextensions.The full generalization to arbitrary default theories uses a reduction of default the- ories to prerequisite-free theories. The reduction can be viewed as dual to the Gelfond/Lifschitzreductionusedinlogicprogrammingforthedefinitionofan- swersets.Wefinallyshowhowpreferenceinformationcanberepresentedinthe logicallanguage. 1 Introduction Innonmonotonicreasoningconflictsamongdefaultsareubiquitous.Forinstance,more specific rules may be in conflict with more general ones, a problem which has been studied intensively in the context of inheritancenetworks [21,26,27]. When defaults are used for representingdesign goals in configurationtasks conflicts naturallyarise. The same is true in model based diagnosis where defaults are used to represent the assumptionthatcomponentstypicallyareok.Inlegalreasoningconflictsamongrules areverycommon[22]andkeepmanylawyersbusy(andrich). Thestandardnonmontonicformalismshandlesuchconflictsbygeneratingmultiple beliefsets. Indefaultlogic [23]andautoepistemiclogic [18]thesesets arecalledex- tensionsorexpansions,respectively.Incircumscription[17]thebeliefsetscorrespond todifferentclassesofpreferredmodels. Usually,notallofthebeliefsetsareplausible.Weoftentendtoprefersomeofthe conflicting rules and are interested in the belief sets generated by the preferred rules only.Onewaytoachievethisis torerepresentthedefaultsinsuchawaythattheun- wantedbeliefsetsarenotgenerated,forinstancebyaddingnewconsistencyconditions toadefault.Thisapproachhastheadvantagethatthelogicalmachineryoftheunderly- ingnonmonotoniclogicdoesnothavetobechanged.Ontheotherhand,rerepresenting thedefaultsthatwayisaveryclumsybusiness.Theresultingnewdefaultstendtobe rathercomplex.Moreover,theadditionofnewinformationtotheknowledgebasemay leadtofurtherrerepresentations.Inotherwords,elaborationtoleranceisviolated. For this reason we prefer an approach where preferences among defaults can be representedviaanexplicit preferencerelationandwherethelogicalmachineryis ex- tended accordingly. Indeed, for all major nonmonotonicformalisms, such prioritized versionshavebeenproposedin thepast. Amongthemare prioritizedcircumscription [12],hierarchicautoepistemiclogic[15],prioritizedtheoryrevision[2,19],prioritized logicprogramming[25,28],orprioritizedabduction[10]. AlsoseveralprioritizedversionsofReiter’sdefaultlogic,thelogicwearedealing withinthispaper,havebeendescribedintheliterature[16,4,1,9],aswellasofdefea- siblelogicsbeyonddefaultlogic[20,13].However,aswewillshowinSection3,these approaches are not fully satisfactory. It turns out that some of them implicitly recast Reiter’s default logic to a logic of graded beliefs, while others do overly enforcethe applicationofruleswithhighpriority,whichleadstocounterintuitivebehavior. Our approach takes a different perspective, which is dominated by the following twomainideas.Thefirstisthattheapplicationofadefaultrulemeanstojumptoacon- clusion,andthisconclusionisyetanotherassumptionwhichhastobeusedgloballyin the programforthe issue of decidingwhethera ruleis applicableor not.Thesecond is thattherulesmustbe appliedin anordercompatiblewiththepriorityinformation. Wetakethistomeanthata ruleisappliedunlessitis defeatedviaitsassumptionsby rulesofhigherpriorities.Thisviewisnewandavoids theunpleasantbehaviorwhich is presentwiththeotherapproaches.Ourformalizationoftheseideas involvesadual ofthestandardGelfond-Lifschitzreductionandacertainoperatorusedtochecksatis- factionofpriorities.Inordertobaseourapproachonfirmergroundwesetforthsome abstract principles that, as we believe, any formalization of prioritized default logic shouldsatisfy.Wedemonstratethatourapproachsatisfiestheseprinciples,whileother approachesviolatethem. The remainder of this paper is organizedas follows. The next section recalls the basicdefinitionsofdefaultlogicandintroducesthenotionofaprioritizeddefaultthe- ory. Section 3 introduces two basic principles for preference handling,reviews some approaches to prioritized default logic and demonstrates that they fail to satisfy the principles.InSection 4, we thenpresent ourapproach,byintroducingthe conceptof preferredextensions.Wewillintroducethisnotioninastepwisemanner,startingwith the simplest case, namelyprerequisite-freenormaldefaults, which are also calledsu- pernormaldefaults.Wethenextendourdefinitiontoprerequisite-freedefaulttheories, showingthatanadditionalfixedpointconditionisneededtogetthedefinitionofpre- ferredextensionsright.Finally,wehandlearbitrarydefaulttheoriesbyreducingthem tothe prerequisite-freecase.Thereductioncanbe viewedas dualtothefamousGel- fond/Lifschitzreductionforextendedlogicprograms.InSection5weshowhowpref- erenceinformationcanbeexpressedinthelogicallanguage.Thismakesitpossibleto reasonnotonlywith, butalso aboutpreferencesamongrules.Section6 discusses re- latedwork,andconcludesthe paperbyconsideringpossibleextensionsandoutlining furtherwork. 2 Theworkreportedheregeneralizestheapproachpresentedin[7],whichcoversthe fragmentofdefaultlogicequivalenttoextendedlogicprograms,andextendstheresults. 2 Prioritized DefaultTheories We firstrecallthebasicdefinitionsunderlyingReiter’s defaultlogic.A defaulttheory is apair ofatheory containingfirst-ordersentencesandasetofde- faults .(cid:0)Ea(cid:0)ch(cid:2)dDe(cid:2)faWul(cid:3)t is ofthe forWm , , where , , and are first-orDderformulas.Theintuitivemeanain(cid:4)gbo(cid:0)f(cid:2)t(cid:3)h(cid:3)e(cid:3)(cid:2)dbenfa(cid:4)ucltnis:(cid:0)if (cid:5)isderiveadabnidthe c are separatelyconsistentwithwhatisderived,theninfer .Formuala iscalledtheprbeireq- uisite,each ajustification,and theconsequentoftchedefault.Faoradefault weuse , bi , and tocdenote the prerequisite,the set of justificatidons, and pthree(cid:2)cdo(cid:3)nsejquuset(cid:2)ndt(cid:3)of ,recsopnesc(cid:2)tidv(cid:3)ely; denotes .Asusual,we assumethat andd areinskole(cid:2)mjizuesdt(cid:2)fdo(cid:3)rmandthaft(cid:2)oapejnad(cid:3)efjauulstts(cid:2),di.(cid:3)eg.,defaultswith freevariableWs,repreDsentthe sets oftheirgroundinstancesovertheHerbranduniverse [23];adefaulttheorywithopendefaultsisclosedbyreplacingopendefaultswiththeir groundinstances.Inwhatfollows,weimplicitlyassumethatdefaulttheoriesareclosed beforeextensionsetcareconsidered. A (closed) default theory generates extensions which represent acceptable sets of beliefswhichareasonermightadoptbasedonthegivendefaulttheory .Exten- sionsaredefinedin[23]asfixedpointsofanoperator . mapsan(cid:2)Dar(cid:2)bWitra(cid:3)rysetof formulas tothesmallestdeductivelyclosedset th(cid:5)a(cid:2)tc(cid:5)on(cid:2)tains andsatisfiesthe (cid:0) condition:Sif , and S then W . Intuitively,an (cid:0) (cid:0) extensionisaase(cid:4)tbo(cid:0)f(cid:2)b(cid:3)e(cid:3)l(cid:3)i(cid:2)ebfsn(cid:4)ccon(cid:3)taiDninga (cid:3) Ssuchtha(cid:2)tbi (cid:4)(cid:3) S c (cid:3) S W 1. asmanydefaultsasconsistentlypossiblehavebeenapplied,and 2. onlyformulaspossessinganoncircularderivationfrom usingdefaultsin are contained. W D Adefaulttheory mayhavezero,oneormultipleextensions.Defaulttheoriespos- sessingatleastonee(cid:0)xtensionwillbecalledcoherent.Wesayadefault isdefeatedbyasetofformulas ,iff forsome a. (cid:4)b(cid:0)(cid:2)(cid:3)(cid:3)(cid:3)(cid:2)bn(cid:4)c Adefault iscalSledno(cid:2)rmbia(cid:3)l,iSf islogicaill(cid:3)yfeq(cid:5)u(cid:2)(cid:3)iv(cid:3)a(cid:3)l(cid:2)enngtto ;itiscalled prerequisite-frdee(cid:0), ifa (cid:4) bis(cid:4)ca logical truth, whichbis denoted by . Defaulcts which are both prerequisite-freae and normal are called supernormal. A (cid:5)default theory is called normal(prerequisite-free,supernormal),ifallofitsdefaultsarenormal(prerequisite- free,supernormal),respectively. Adefault iscalledgeneratinginasetofformulas ,if and ; denodte by the set of all defaultsSfrompre(cid:2)dw(cid:3)(cid:3)hicSh are(cid:2)gjeunsetra(cid:2)dti(cid:3)n(cid:6)g Sin (cid:0). I(cid:7)t is well-knowGnD[(cid:2)2E3](cid:2)Dth(cid:3)at every extension of a defaultDtheory is chaEracterizedthrough ,i.e., (cid:0) (cid:0) (cid:2)D(cid:2)W(cid:3) GD(cid:2)D(cid:2)E(cid:3) (1) E (cid:0)Th(cid:2)W (cid:8)cons(cid:2)GD(cid:2)D(cid:2)E(cid:3)(cid:3)(cid:3) where foranyset .Moreover,if isprerequisite- (cid:0) (cid:0) (cid:0) free,thceonnesv(cid:2)eDry(cid:3)(cid:0)wfhciocnhss(cid:2)adti(cid:3)sfijeds(cid:3)(1D)isganextensionD(cf.[16]). (cid:0) E 3 We now introducethe notion of a prioritizeddefault theory. Basically, we extend defaulttheorieswitha strict partialorder (i.e., and , implies (cid:0) (cid:0) (cid:0)(cid:0) )onthedefaultrules.Adefault w(cid:6)ill becdon(cid:4)(cid:6)sidderedpdre(cid:6)ferdreddov(cid:6)erddefault , (cid:0)(cid:0) (cid:0) dwh(cid:6)endever holds. d d (cid:0) d(cid:6)d Definition1. Aprioritizeddefaulttheoryisatriple where is adefaulttheoryand isastrictpartialorderon .(cid:0) (cid:0) (cid:2)D(cid:2)W(cid:2)(cid:6)(cid:3) (cid:2)D(cid:2)W(cid:3) (cid:6) D Partially ordered default theories have the advantage that the preference ordering amongcertaindefaultscanbeleftunspecified.Thisisimportantbecauseinmanycases thereisnonaturalwayofassigningpreferences.However,thecaseofarbitrarypartial orderscanbereducedtoparticularrefinements,namelywell-orderings,inacanonical way.Recallthatapartialorderisawell-ordering,iffeverysubsetoftheelementshas theleastelement;observethatanywell-orderingisatotalordering. Definition2. A fully prioritized default theory is a prioritized default theory where isawell-ordering. (cid:0) (cid:0) (cid:2)D(cid:2)W(cid:2)(cid:6)(cid:3) (cid:6) Conclusionsofprioritizeddefaulttheoriesaredefinedintermsofpreferredexten- sions,whichareasubsetoftheclassicalextensionsof ,i.e.,theextensionsof accordingto[23].Thedefinitionofpreferredextension(cid:0)forfullyprioritizeddefa(cid:2)uDlt(cid:2)tWhe-(cid:3) orieswillbegiveninthenextsection.Thegeneralcaseofarbitraryprioritizeddefault theoriescanthenbereducedtothiscaseasfollows. Definition3. Let beaclosedprioritizeddefaulttheory. isapriori- tizedextensionof(cid:0)i(cid:0)ff (cid:2)Di(cid:2)sWa(cid:2)p(cid:6)ri(cid:3)oritizedextensionofafullyprioritizeddEefaulttheory s(cid:0)uchtEhat implies . (cid:0) (cid:0) (cid:0) (cid:0) (cid:0) (cid:0) (cid:0)(cid:2)D(cid:2)W(cid:2)(cid:6)(cid:3) d(cid:6)d d(cid:6) d Thepreferredextensionsofanopenprioritizeddefaulttheory arethepreferred extensions of obtained by closing . The partial order is i(cid:0)nherited from to (cid:2) the ground set(cid:0)of instances in the(cid:0)obvious way. We assu(cid:6)me here that no conDflict (cid:2) arises,i.e., doesnotrDesultforany ;otherwise,nopreferredextensions (cid:2) aredefined.d (cid:6) d d (cid:3) D In the remainder of this paper, we will restrict our discussion to fully prioritized defaulttheories.Unlessstatedotherwise,all defaulttheoriesaretacitlyassumedtobe closed. 3 Problems with ExistingApproaches Differentprioritizedversionsofdefaultlogichavebeenproposedintheliterature,e.g. [16,4,1,24,9].Wewillshowthatallofthemfailtosatisfynaturalprinciplesforpref- erencehandlingindefaultlogic. 3.1 Principlesforpriorities Thefirstprinciplecanbeviewedasameaningpostulatefortheterm“preference”and states what we consider a minimal requirementfor preferencehandlingin rule based systems: 4 PrincipleI. Let and betwoextensionsofaprioritizeddefaulttheory gen- eratedbythedeBfa(cid:0)ults B(cid:2) and ,where ,respecti(cid:0)vely.If ispreferredover R,th(cid:8)enfd(cid:0)gisnoRta(cid:8)prfedfe(cid:2)rgredextendsi(cid:0)o(cid:2)nd(cid:2)of(cid:3)(cid:4) R. d(cid:0) d(cid:2) B(cid:2) T We find it hard to see how the use of the term “preference among rules” could be justifiedincaseswherePrincipleIisviolated. The second principle is related to relevance. It tries to capture the idea that the decisionwhethertobelieveaformula ornotshoulddependontheprioritiesofdefaults contributingtothederivationof onlpy,notontheprioritiesofdefaultswhichbecome applicablewhen isbelieved: p p PrincipleII. Let be a preferred extension of a prioritized default theory , a(cElosed)defaultsuchthattheprerequisiteof isnotin .Th(cid:0)en(cid:0) (cid:2)isDa(cid:2)pWre(cid:2)f(cid:6)er(cid:3)reddextensionof wheneverd agreesEwith oEn (cid:0) (cid:0) (cid:0) prioritiesamongdefaultsin(cid:0) .(cid:0)(cid:2)D(cid:8)fdg(cid:2)W(cid:2)(cid:6)(cid:3) (cid:6) (cid:6) D Thus,addingarulewhichisnotapplicableinapreferredbeliefsetcanneverrenderthis beliefsetnon-preferredunlessnewpreferenceinformationchangespreferencesamong someoftheoldrules(e.g.viatransitivity).Inotherwords,abeliefsetisnotblamedfor notapplyingruleswhicharenotapplicable. We will see that each of the existing treatments of preferences for default logic, describedin[16,4,1,24],violatesoneoftheseprinciples. 3.2 ControlofReiter’squasi-inductivedefinition The first group of proposals [16,4,1] uses preferences to control the quasi-inductive definitionofextensions[23]:ineachstep ofthegenerationofextensionsthedefaults withhighest prioritywhoseprerequisiteshavealreadybeenderivedareapplied.Now whatis wrongwiththis idea?The answeris: thepreferredextensionsdonottakese- riously what they believe. It may be the case that a less preferred default is applied althoughthe prerequisiteof a conflicting,morepreferreddefaultis believedin a pre- ferredextension.Aswewillsee,thiscanleadtosituationswherePrincipleIisviolated. Thementionedapproachesdifferintechnicaldetail.Wedonotwanttopresentthe exact definitions here. Instead, we will illustrate the difficulties using an examplefor whichalltheseapproachesobtainthesameresult. Example1. Assumewearegiventhefollowingdefaulttheory: (1) (2) a(cid:4)b(cid:4)b (3) (cid:5)(cid:4)(cid:2)b(cid:4)(cid:2)b (cid:5)(cid:4)a(cid:4)a Assume furtherthat (1) is preferredover(2) and(2)over(3).This default theory hastwoclassicalextensions,namely ,whichisgeneratedbyrules(1) and (3), and , whEic(cid:0)h(cid:0)isTgehn(cid:2)efraa(cid:2)tbegd(cid:3)by rules (2) and (3). The single preferred exteEn(cid:2)sio(cid:0)nTinht(cid:2)hfeaa(cid:2)p(cid:2)pbrgo(cid:3)aches mentioned above is . The reason is that the prerequisite of (2) is derived before the prerequisite of (1)Ein(cid:2)the construction of the extension.TheapproachesthusviolatePrincipleI. 5 The selection of in the previous example was already observedin [4]. In that paper,thefirstauthorEtr(cid:2)iedtodefendhisapproacharguingthatthereisonlyweakevi- dencefortheliteral inourexample.Wereviseourview,however,anddonotsupport thisargumentanyloanger.Afterall,defaultlogicis notalogicofgradedbeliefwhere degreesofevidenceshouldplayarole.Defaultlogicmodelsacceptanceofbeliefbased on defeasiblearguments.Since is an acceptedbelief, we believe rule (1) should be appliedand shouldbethepreaferredextensionintheexample. E(cid:0) 3.3 Rintanen’sapproach An entirely different approach was proposed in [24]. Rintanen uses a total order on (normal)defaultstoinducealexicographicorderonextensions. Call anormaldefaultrule : appliedin asetofformulas (denoted ),if and arein .rA(cid:0)neaxtbe(cid:4)nbsion is thenpreferredoverEextension r,(cid:3)if (cid:0) aanpdplo(cid:2)nEly(cid:3)ifthaereisabdefaultE E satisfyingthefollowingcondEition: (cid:0) if ispreferredover and r (cid:3)appl(cid:2)E(cid:3)n,athpepnl(cid:2)E (cid:3) . (cid:0) (cid:0) (cid:0) (cid:0) rUnfortunately,alsorthisarpp(cid:3)roaapcphl(cid:2)leEad(cid:3)stocournt(cid:3)erainptpuli(cid:2)tiEve(cid:3)resultsandtoaviolation ofourprinciples. Example2. Considerthefollowingdefaulttheory: (1) (2) a(cid:4)b(cid:4)b (3) (cid:5)(cid:4)(cid:2)a(cid:4)(cid:2)a (cid:5)(cid:4)a(cid:4)a Again(1)ispreferredover(2),and(2)over(3).Thedefaulttheoryhastwoclassical extensions,namely and .Intuitively,sincethedeci- sionwhethertobeliEev(cid:0)e(cid:0)oTrhn(cid:2)oft(cid:2)daegp(cid:3)endsoEn(cid:2)(2(cid:0))aTnhd(cid:2)(f3a)(cid:2)obngl(cid:3)y,andsince(2)ispreferred over(3),wewouldexpeacttoconclude ,inotherwords,toprefer . However,theapproachofRintanen(cid:2)praefers .ThereasonisthatEin(cid:0) default(1)is applied.Beliefin isthusacceptedonthegrouEn(cid:2)dsthatthisallowsustoEa(cid:2)pplyadefault ofhighpriority.Tahisisfarfrombeingplausibleandamountstowishfulthinking.Itis alsoeasytoseethatPrincipleIIisviolated: clearlyisthesinglepreferredextension ofrules(2)and(3)inRintanen’sapproach.EA(cid:0)ddingrule(1)whichisnotapplicablein makes anon-preferredextension. E(cid:0) E(cid:0) Sincealltheseapproachessufferfromdrawbacks,wedevelopournewapproachin thefollowingsection. 4 Preferred Extensions In this section we introduce our new notion of preferred extensions for fully priori- tizeddefaulttheories.Asmentionedbefore,arbitraryprioritizeddefaulttheoriescanbe reducedtothatcaseinacanonicalmanner. We will considerthe simplest case first, namelysupernormaldefaulttheories.We thenproceedtoprerequisite-freedefaulttheoriesand,finally,toarbitrarydefaulttheo- ries. 6 4.1 Supernormaldefaulttheories Preferencehandlinginprioritizedsupernormaldefaulttheoriesisrathereasy.Theob- viousideais tocheckthe applicabilityofdefaultsin theorderofpreference.We first introduceanoperator which,givenafullyprioritizedprerequisite-freedefaulttheory (whichisnotnecesCsarilysupernormal),producestentativeconclusionsof . (cid:0) Calladefault activeinasetofformulas ,if , (cid:0) and allhdold.Intuitively,adefaultisSactivperien(cid:2)d(cid:3)i(cid:3)fiSt is(cid:2)ajpupslitc(cid:2)adb(cid:3)l(cid:6)ewSr(cid:0)t. (cid:7)and choanssn(cid:2)odt(cid:3)ye(cid:3)(cid:4)tbSeenapplied. S S Definition4. Let beafullyprioritizedprerequisite-freedefaulttheory. Theoperator is(cid:0)de(cid:0)fin(cid:2)eDd(cid:2)aWs(cid:2)fo(cid:6)ll(cid:3)ows: , where ,and foreveryordinCal , C(cid:2)(cid:0)(cid:3) (cid:0) (cid:3)(cid:3)(cid:3)E(cid:3) E(cid:3) (cid:0) Th(cid:2)W(cid:3) (cid:7)(cid:8)(cid:6) S ifnodefaultfrom isactivein E(cid:3)(cid:2) otherwise,where D E(cid:3)(cid:7) E(cid:3) (cid:0)(cid:2)Th(cid:2)E(cid:3)(cid:8)fcons(cid:2)d(cid:3)g(cid:3) isactivein (cid:3) (cid:0) (cid:0) d(cid:0)min(cid:4)fd (cid:3)D jd E(cid:3)g(cid:2) where .(Notethatforeachsuccessorordinal , .) (cid:4) E(cid:3) (cid:0) (cid:5)(cid:4)(cid:3)E(cid:5) (cid:7)(cid:0)(cid:9)(cid:8)(cid:5) E(cid:3) (cid:0)E(cid:5) In the case of supernormal default theories, the operator always produces an extensionintShesenseofReiterandthuscandirectlybeusedtoCdefinepreferredexten- sions: Definition5. Let beafullyprioritizedsupernormaldefaulttheory. isthepreferredext(cid:0)en(cid:0)sio(cid:2)nDo(cid:2)fW(cid:2)i(cid:6)fa(cid:3)ndonlyif . E (cid:0) E (cid:0)C(cid:2)(cid:0)(cid:3) Itisobviousthatthereisalwaysexactlyonepreferredextension.Notethatthedefinition ofthisextensionisfullyconstructive.Itextendsthenotionofpreferredsubtheoriesas developedin[3]totheinfinitecase. 4.2 Prerequisite-freedefaulttheories Canwesimplyextendthedefinitionforsupernormaldefaultstothiscase?Theanswer is obviously no. It may be the case that defaults are applied during the construction whicharedefeatedlaterthroughtheapplicationofdefaultsoflowerpriority. So,canwesimplysay:iftheconstructiongivesusanextension,thenthatextension ispreferred?Unfortunately,theanswerisagainno. Example3. Considerthefollowingdefaulttheory: (1) (3) (2)(cid:5)(cid:4)(cid:2)b(cid:4)a (4) (cid:5)(cid:4)a(cid:4)a (cid:5)(cid:4)(cid:2)a(cid:4)(cid:2)a (cid:5)(cid:4)b(cid:4)b Assume .Applyingoperator tothisdefaulttheoryyields (cid:2)(cid:5)(cid:3) (cid:6).A(cid:2)s(cid:9)(cid:3)ea(cid:6)sil(cid:2)y(cid:10)s(cid:3)e(cid:6)en,(cid:2)(cid:11)th(cid:3)isisaclassicalextenCsion.Nonetheless,onewould Ecer(cid:0)tainTlhy(cid:2)nfoat(cid:2)bsgay(cid:3) that this extension preserves priorities. What went wrong? Default (2) is defeated in by applying a default which is less preferred than (2), namely default(3).InthecEonstructionof thisremainsunnoticed,sincerule(1),although defeatedin ,blockstheapplicabCili(cid:2)t(cid:0)yo(cid:3)f(2).Inotherwords,withoutaspecialtreatment ofsuchcaseEs,arule(e.g.(3))mayinheritahighpreferencefromarulewiththesame consequent(namely(1)),evenifthatlatterruleisnotapplicableintheextension. 7 To avoid this, we have to impose an additional condition on an extension: in the construction of the tentative conclusions, we have to discard each rule whose conse- quentisin ,butwhichisdefeatedin .Sincewehavetotake astheresultofthe constructionEintoaccount,thisamountsEtoaddingafixedpointconEdition.Whatwewill doischeckwhetherwearriveatthesamesetofformulasaftereliminatingruleswhich aredefeatedin andwhoseheadisin . E E Definition6. Let beafullyprioritizedprerequisite-freedefaulttheory. Then,aset offo(cid:0)rm(cid:0)ula(cid:2)Dsi(cid:2)sWa(cid:2)p(cid:6)ri(cid:3)oritizedextensionof ,ifandonlyif E (cid:0) , (cid:6)E E (cid:0)C(cid:2)(cid:0) (cid:3) where isobtainedfrom bydeletingalldefaultswhoseconsequentsarein and (cid:6)E whicha(cid:0)redefeatedin . (cid:0) E E This definition is coherent with the intuition that preferred extensions are distin- guishedclassicalextensions.Moreover,asinthecaseofsupernormaltheories,thepre- ferredextension(ifitexists)isunique. Proposition1. Let beafullyprioritizedprerequisite-freedefaultthe- ory.Then,everypref(cid:0)err(cid:0)ed(cid:2)Dex(cid:2)teWns(cid:2)i(cid:6)on(cid:3) of isaclassicalextension,and hasatmost onepreferredextension. E (cid:0) (cid:0) Proof. Toshowthefirstpart,assumethat isapreferredextensionof .Weshow that (*)holEds;sincealldefaultsareprere(cid:0)quisite-free, thisiEmp(cid:0)lieTsht(cid:2)hWat (cid:8)cisonasc(cid:2)lGasDsic(cid:2)Dal(cid:2)eExt(cid:3)e(cid:3)n(cid:3)sionof (cf.paragraphafterEquation(1)). Since E ,nodefaultfrom (cid:0) isappliedintheconstruction (cid:6)E of ;hencEe,(cid:0)C(cid:2)(cid:0) (cid:3) DnGDfo(cid:2)lDlow(cid:2)Es.(cid:3)Ontheotherhand,sinceeach Eis includeEd(cid:9)inTh(cid:2)aWnd(cid:8)cdooness(cid:2)GnoDt(cid:2)dDef(cid:2)eEat(cid:3)(cid:3)(cid:3), for every , it follows E(cid:3) E; hencEe, d d (cid:3) GfDoll(cid:2)oDw(cid:2)sE.T(cid:3)his implies (cid:6)E c(*o)n,sa(cid:2)ndd(cid:3)p(cid:3)rovCe(cid:2)s(cid:0)that(cid:3) isaclaTsshic(cid:2)aWlex(cid:8)tecnosniosn(cid:2)GofD(cid:2)D. (cid:2)E(cid:3)(cid:3)(cid:3) (cid:9) E ForthesecondpEart,assumethat differentpr(cid:0)eferredextensions exist.We (cid:0) deriveacontradiction.Let betheleastdefaultin suchthateitherE (cid:4)(cid:0) E and ,or d and D .Sinc(cid:2)ei(cid:3)d(cid:3)GD,(cid:2)Dm(cid:2)Eus(cid:3)t (cid:0) (cid:0) (cid:0) existc.oCnosn(cid:2)dsi(cid:3)de(cid:3)(cid:4)r Efirst the(cid:2)ici(cid:3)asde(cid:3) G.DIt(cid:2)fDoll(cid:2)oEws(cid:3)thatcons(cid:2)d(cid:3) (cid:3)(cid:4)(cid:0);Efor,otherEwis(cid:4)(cid:0)e E d (cid:6)E holds, which is a contrad(cid:2)ici(cid:3)tion. The defaultd (cid:3)muDst be defeated by c;ofnrso(cid:2)md(cid:3)th(cid:3)e (cid:0) (cid:0) Edefinition of , it follows that is defeatded by E for (cid:6)E C(cid:2)(cid:0) (cid:3) .Fromthedminimalityof ,itTfho(cid:2)llWow(cid:8)sthcoatnfso(cid:2)rKev(cid:3)e(cid:3)ry K (cid:0) (cid:0) (cid:0) (cid:0) (cid:0) fitdho(cid:3)ldGstDha(cid:2)tD(cid:2)E (cid:3)jd (cid:6)d.gHence, d ,whichmeans dedfea(cid:3)tsK. (cid:0) Thisisaconctorandsi(cid:2)cdtio(cid:3)n(cid:3)toE Th(cid:2)W,h(cid:8)ocwoenvse(cid:2)rK.T(cid:3)h(cid:3)e(cid:9)caEse ,i.e., E d (cid:0) and isanalodgo(cid:3)usG.DTh(cid:2)iDsp(cid:2)Ero(cid:3)vestheresult. (cid:2)ii(cid:3) d(cid:3)GD(cid:2)D(cid:2)E (cid:3) cons(cid:2)d(cid:3)(cid:3)(cid:4) E 4.3 Generaldefaulttheories We will now reduce the general case to the prerequisite-free case. The basic idea is the following:in orderto checkwhetheran extension of a fully prioritizeddefault theory ispreferred,weevaluatetheprerequisitesofthEedefaultrulesaccordingtothe (cid:0) 8 extension . Evaluating prerequisites means (1) eliminating prerequisites which are containedEin the extension from the correspondingrules, and (2) eliminating rules whoseprerequisitesarenotEcontainedin .Observethatthisoperationcanbeviewed asadualofthestandardGelfond/LifschitEzreductionfromlogicprogramming[11],in whichthejustificationsratherthantheprerequisitesareusedtoeliminateandsimplify rules. Finally, we check whether the resulting prerequisite-free theory has as its preferredextension. (cid:0)E E Definition7. Let beafullyprioritizeddefaulttheory and aset of formulas.Thedefa(cid:0)ult(cid:0)the(cid:2)oDr(cid:2)yW(cid:2)(cid:6)(cid:3) isobtainedfrom asfolloEws: resultsfrom by (cid:0)E (cid:0)(cid:2)DE(cid:2)W(cid:2)(cid:6)E(cid:3) (cid:0) DE D 1. eliminatingeverydefault suchthat ,and 2. replacing by indal(cid:3)lreDmainingdefparuel(cid:2)tsd;(cid:3)(cid:3)(cid:4) E pre(cid:2)d(cid:3) (cid:5) isinheritedfrom asfollows:foranyrules and in , holdsifand (cid:0) (cid:0) (cid:6)onElyif holds(cid:6)forthe -leastrules andd idn wDhEichdg(cid:6)ivEerdiseto and (cid:0) (cid:0) (cid:0) (i.e., d(cid:5)(cid:6)d(cid:5)and ),(cid:6)respectively.d(cid:5) d(cid:5) D d d (cid:0) (cid:0) d(cid:5)E (cid:0)d d(cid:5)E (cid:0)d The resulting default theory is clearly prerequisite-free.We thus can define preferred extensionsforgeneraldefaulttheoriesasfollows: Definition8. Let beafullyprioritizeddefaulttheory.Then, isapri- oritizedextension(cid:0)of(cid:0),(cid:2)iDf (cid:2)W(cid:2)(cid:6)is(cid:3)aclassicalextensionof ,and isapErioritized extensionof . (cid:0) (cid:2)i(cid:3)E (cid:0) (cid:2)ii(cid:3)E (cid:0)E LetusshowthattheproblematicexamplesdiscussedinSection3arehandledcorrectly inourapproach: Example4. Considerthedefaulttheory : (cid:0) (1) (2) a(cid:4)b(cid:4)b (3) (cid:5)(cid:4)(cid:2)b(cid:4)(cid:2)b (cid:5)(cid:4)a(cid:4)a Againweassumethat(1)ispreferredover(2)and(2)over(3).Thisdefaulttheory hastwoclassical extensions,namely and . consistsoftherules E(cid:0) (cid:0) Th(cid:2)fa(cid:2)bg(cid:3) E(cid:2) (cid:0) Th(cid:2)fa(cid:2)(cid:2)bg(cid:3) (cid:0)E(cid:0) (1) (2) (cid:5)(cid:4)b(cid:4)b (3) (cid:5)(cid:4)(cid:2)b(cid:4)(cid:2)b (cid:5)(cid:4)a(cid:4)a Itisnotdifficulttoseethat .Sincetherearenoruleswhoseheadis in butwhicharedefeatedinC(cid:2)(cid:0), E(cid:0)(cid:3)is(cid:0)aEpr(cid:0)eferredextension.Onthecontrary, is notEp(cid:0)referred.NotethatthedualE(cid:0)-Ere(cid:0)ductof isthesameasthedual -reductE,a(cid:2)nd that appliedtothereductdoEes(cid:2)notreprod(cid:0)uce . E(cid:0) C(cid:2)(cid:10)(cid:3) E(cid:2) 9 Example5. Considerthefollowingdefaulttheory : (cid:0) (cid:0) (1) (2) a(cid:4)b(cid:4)b (3) (cid:5)(cid:4)(cid:2)a(cid:4)(cid:2)a (cid:5)(cid:4)a(cid:4)a Again(1)ispreferredover(2),and(2)over(3).ThedefaulttheoryhastwoReiter extensions,namely and .We arguedin Section 3 that shouldbeprEef(cid:0)er(cid:0)redT.Cho(cid:2)fn(cid:2)siadger(cid:3) :E(cid:2) (cid:0) Th(cid:2)fa(cid:2)bg(cid:3) (cid:0) E(cid:0) (cid:0)E(cid:0) (2) (3) (cid:5)(cid:4)(cid:2)a(cid:4)(cid:2)a (cid:5)(cid:4)a(cid:4)a Clearly, , and since again thereare no rules defeatedin whose (cid:0) headisin C,(cid:2)w(cid:0)eEh(cid:0)a(cid:3)ve(cid:0)thEat(cid:0) ispreferred. E(cid:0) isnEo(cid:0)tpreferredsinceE(cid:0) whichdiffersfrom . (cid:0) E(cid:2) C(cid:2)(cid:0)E(cid:2)(cid:3)(cid:0)Th(cid:2)fb(cid:2)(cid:2)ag(cid:3) E(cid:2) Thefollowingpropositiontells usthatall ruleswhicharenotgeneratinginapre- ferred extension must be defeated by some appropriate generating rules, which must havehigherpriority. Proposition2. Let beafullyprioritizedgrounddefaulttheory,andlet beaclassicalexte(cid:0)ns(cid:0)ion(cid:2)Wof(cid:2)D.(cid:2)T(cid:6)h(cid:3)en, isapreferredextensionof ,ifandonlyiffor Eeachdefault suchthat(cid:0) E and ,thereex(cid:0)istsasetofdefaults d(cid:3)D pre(cid:2)d(cid:3)su(cid:3)chEthat ciosndse(cid:2)fde(cid:3)at(cid:3)(cid:4)edEin . (cid:0) (cid:0) Kd (cid:9)fd (cid:3)GD(cid:2)D(cid:2)E(cid:3)jd (cid:6)dg d Th(cid:2)W (cid:8)cons(cid:2)Kd(cid:3)(cid:3) Proof. ( )Supposethatforeverydefault suchthat and aset (cid:11) existsdsuchthat pre(cid:2)d(cid:3)(cid:3)E consd(cid:2)edfe(cid:3)a(cid:3)(cid:4)tsE. (cid:0) (cid:0) By(trKands(cid:9)finfitde)i(cid:3)ndGuDcti(cid:2)oDn(cid:2)oEn(cid:3)thjedset(cid:6)s dg, ,weshowTthh(cid:2)aWtth(cid:8)elceoanstsa(cid:2)cKtidv(cid:3)e(cid:3)default d from in ,providedoneexistsE,(cid:3)ste(cid:7)m(cid:0)sfr(cid:5)omsome and dE (cid:6)E hoDldEs. E(cid:3) d(cid:3)GD(cid:2)D(cid:2)E(cid:3) cons(cid:2)d(cid:3)(cid:3) E(cid:3)For , the statement holds. Indeed. the least rule of is active. Let (cid:6)E be the(cid:7)le(cid:0)ast(cid:5)parent of in , i.e., dE DE. Assuming that (cid:0) (cid:0) d , wedoEbtainD d,(cid:0)andmhienn(cid:4)cfed ijsddEefe(cid:0)ateddEbgy . dTh(cid:3)isDconntrGadDic(cid:2)tDst(cid:2)hEat(cid:3) isactiveKind (cid:0) (cid:7) ,howevder.Thus, E(cid:3) (cid:0) Thh(cid:2)oWlds(cid:3), and fodllEows. E(cid:0) (cid:0) E(cid:3) d (cid:3) GD(cid:2)D(cid:2)E(cid:3) Lceotntsh(cid:2)edn(cid:3)(cid:3)E(cid:3) andassume the statement holds forall . Supposethe least default(cid:7) (cid:8)fr(cid:5)om active in exists, and that its(cid:5)l(cid:12)eas(cid:9)t p(cid:6)are(cid:7)nt in is not (cid:6)E in d.EThe indDucEtion hypotheEsis(cid:3)implies that for each D such (cid:0) thaGt D(cid:2)D(cid:2)Ei(cid:3)t holdsthat . Hence, d (cid:3) GD(cid:2)D(cid:2)E,(cid:3)which (cid:0) (cid:0) impldies(cid:6)thadt isdefeatedcboyns(cid:2)d.(cid:3)Th(cid:3)isEc(cid:3)ontradictstThhat(cid:2)W (cid:8)iscaocntisv(cid:2)eK.Tdh(cid:3)(cid:3)us(cid:9),ifE(cid:3) exists, then d holds;clEea(cid:3)rly, .ThidsEconcludestheinductdiEon,from whichd(cid:3)GD(cid:2)D(cid:2)E(cid:3) cons(cid:2)d(cid:3)(cid:3)E(cid:3)follows. By Equation (1), it follows (cid:6)E C(cid:2)(cid:0)E,(cid:3)w(cid:0)hicThhm(cid:2)eWans(cid:8)thcaotns(cid:2)GisDa(cid:2)pDre(cid:2)feErr(cid:3)e(cid:3)d(cid:3)extension. (cid:6)E E (cid:0)(C)(cid:2)(cid:0)SuEpp(cid:3)ose is a preferredEextension,but some such that and (cid:13) Eis not defeated by any d (cid:3) D , where pre(cid:2)d(cid:3) (cid:3) E (cid:0) cons(cid:2)d(cid:3) (cid:3)(cid:4) E .Let betheleastsuchTruhle(cid:2)Win (cid:8).cSoinncse(cid:2)K(cid:3)i(cid:3)sapreferrKede(cid:9)xtefndsion(cid:3), (cid:0) GfoDr e(cid:2)vDe(cid:2)ryE(cid:3)jd (cid:6)dg d we have D .EBy the minimality of , (cid:0) (cid:0) (cid:6)E it followsdtha(cid:3)t GDb(cid:2)eDco(cid:2)mEe(cid:3)s the leastcaocntisv(cid:2)edr(cid:3)ule(cid:3)inC(cid:2)(cid:0)E (cid:3)at some step , and up tdo (cid:6)E dE DE (cid:7) 10

Description:
In circumscription [17] the belief sets correspond to different classes of preferred models. Usually, not all of the belief sets are plausible. We often tend
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.