Table Of ContentPRINTED ANTENNA ELEMENTS
WITH ATTESTED
ULTRA WIDE BAND ARRAY APPLICABILITY
PRINTED ANTENNA ELEMENTS
WITH ATTESTED
ULTRA WIDE BAND ARRAY APPLICABILITY
PROEFSCHRIFT
ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus Prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,
in het openbaar te verdedigen op 01 februari 2009 om 10.00 uur
door
Fatma Mu¨ge TANYER-TI˙G˘REK
Electrical and Electronics Engineer (Master of Science) in
Middle East Technical University, Ankara, Turkey
geboren te Konya, Turkije
Dit proefschrift is goedgekeurd door de promotor:
Prof.dr.ir. L.P. Ligthart
copromotor:
Dr.ing. I.E. Lager
Samenstelling promotiecommissie:
Rector Magnificus, voorzitter
Prof.dr.ir. L.P. Ligthart, Technische Universiteit Delft, promotor
Dr.ing. I.E. Lager, Technische Universiteit Delft, copromotor
Prof.ir. P. van Genderen, Technische Universiteit Delft
Prof.dr. A. Hızal, Middle East Technical University
Prof.dr. C. Craeye, Universit´e Catholique de Louvain
Prof. F. Le Chevalier, Technische Universiteit Delft
Drir. G.H.C. van Werkhoven, Thales Nederland BV
Prof.dr. J.R. Long, Technische Universiteit Delft, reserve lid
Printed Antenna Elements with Attested UWB Array Applicability
Fatma Mu¨ge Tanyer-Ti˘grek.
Thesis Delft University of Technology.
With references and with summary in Dutch.
ISBN 978–90–9024664–2
Subject headings: ultra wide-band antenna, printed antenna, linear arrays,
antenna array mutual coupling, antenna measurements.
Printed in The Netherlands
Copyright (cid:13)c 2009 by F.M. Tanyer-Ti˘grek
All rights reserved. No part of the material protected by this copyright notice may be
reproduced or utilized in any form or by any means, electronic or mechanical, includ-
ing photocopying, recording or by any information storage and retrieval system, without
permission from the copyright owner.
The work presented in this thesis was financially supported by the Nether-
lands Technology Foundation (STW) and (semi-) governmental and indus-
trial organizations in the Netherlands.
To My Family
Contents
1 Introduction 1
1.1 Problem definition and limitations in the research . . . . . . . 3
1.2 Objectives and main research question . . . . . . . . . . . . . 4
1.3 Proposed methodology . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Novelties and main results . . . . . . . . . . . . . . . . . . . . 5
1.5 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 General conventions employed throughout the thesis . . . . . 8
2 Fundamentals of antennas and arrays 9
2.1 Antenna history and short literature survey . . . . . . . . . . 9
2.2 Antenna elements and arrays . . . . . . . . . . . . . . . . . . 11
2.2.1 Array bandwidth . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Requirements for UWB antennas . . . . . . . . . . . . 13
2.2.3 Approachestoachieveantennas/arrays operatingover
a wide bandwidth . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Limitations in achieving wide-band antennas . . . . . 15
3 Design of UWB elements with no ground plane 19
3.1 Choice for type of radiator . . . . . . . . . . . . . . . . . . . . 19
3.2 “Eared” antenna . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.1 Design procedure . . . . . . . . . . . . . . . . . . . . . 21
II CONTENTS
3.2.2 Determination of the basic dimensions of the original
antenna . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.3 Optimization of the antenna . . . . . . . . . . . . . . 26
3.2.4 Validation of the optimization process . . . . . . . . . 29
3.2.5 Further optimization of the antenna . . . . . . . . . . 37
3.2.6 Validation of the final optimization . . . . . . . . . . . 38
3.3 Operating principles and investigation of UWB characteristics 39
3.3.1 Summary of the antenna operating principles . . . . . 42
3.3.2 Traveling wave characteristic and their impact on the
UWB performance . . . . . . . . . . . . . . . . . . . . 42
3.4 “Tulip” loop antenna . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.1 Antenna design . . . . . . . . . . . . . . . . . . . . . . 47
3.4.2 Modified loop antenna . . . . . . . . . . . . . . . . . . 50
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4 Design of an Artificial Magnetic Conductor 61
4.1 High impedance electromagnetic surfaces– standard approach 61
4.1.1 Theoretical background . . . . . . . . . . . . . . . . . 63
4.1.2 Design procedure . . . . . . . . . . . . . . . . . . . . . 65
4.1.3 Integration of the “Tulip” loop antenna and standard
AMC structures . . . . . . . . . . . . . . . . . . . . . 67
4.2 Non-standard, a-periodic AMC structure . . . . . . . . . . . . 70
4.2.1 Integration of the “Tulip” loop antenna and non-
standard AMC structures . . . . . . . . . . . . . . . . 70
4.2.2 The effect of extending the size of a-periodic AMC
structures . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5 Integration of the designed radiators in UWB array envi-
ronments 77
5.1 Linear array consisting of “Tulip” loop elements . . . . . . . 78
5.1.1 Array architecture optimization . . . . . . . . . . . . . 78
CONTENTS III
5.1.2 Array performance assessment . . . . . . . . . . . . . 85
5.2 Linear arrays consisting of “Eared” elements . . . . . . . . . 90
5.2.1 Analysis of the linear array containing 7 elements . . . 92
5.2.2 Analysis of the linear array containing 15 elements . . 99
5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6 Suitability of antenna elements to Impulse Radio applica-
tions 115
6.1 Readily available solutions to full IR UWB band coverage . . 115
6.2 IR UWB antenna design . . . . . . . . . . . . . . . . . . . . . 116
6.2.1 Design philosophy . . . . . . . . . . . . . . . . . . . . 116
6.2.2 Determination of the antenna dimensions . . . . . . . 119
6.3 Frequency domain validation . . . . . . . . . . . . . . . . . . 123
6.3.1 Scattering parameter measurements . . . . . . . . . . 123
6.3.2 Radiation pattern measurements . . . . . . . . . . . . 123
6.4 Time-domain validation . . . . . . . . . . . . . . . . . . . . . 130
6.4.1 System setup . . . . . . . . . . . . . . . . . . . . . . . 130
6.4.2 Investigation of the group delay . . . . . . . . . . . . . 130
6.4.3 Investigation of the fidelity factor . . . . . . . . . . . . 131
6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7 Conclusions 137
7.1 General conclusions and discussions . . . . . . . . . . . . . . 137
7.2 Elements of novelty . . . . . . . . . . . . . . . . . . . . . . . . 140
7.3 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . 141
A Work embedding in IRCTR antenna research 145
B (Quasi-) magnetic antennas 147
C Time-domain de-embedding techniques 149
IV CONTENTS
D Array reflection coefficient synthesis 151
E Coplanar waveguide structures 155
E.1 Conventional coplanar waveguides . . . . . . . . . . . . . . . 155
E.2 Coplanar waveguides on a finite thickness dielectric substrate 158
Bibliography 161
List of Abbreviations 171
Summary 173
Samenvatting 175
Acknowledgments 177
About the author 179
Author’s Publications 181
Description:Subject headings: ultra wide-band antenna, printed antenna, linear arrays, antenna array mutual coupling, who defined the electromagnetic field theory and showed the first electro- magnetic systems. ity of an antenna was firstly introduced by Harold Wheeler and L. J. Chu, and later by R.