PRINTED ANTENNA ELEMENTS WITH ATTESTED ULTRA WIDE BAND ARRAY APPLICABILITY PRINTED ANTENNA ELEMENTS WITH ATTESTED ULTRA WIDE BAND ARRAY APPLICABILITY PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus Prof. ir. K.C.A.M. Luyben, voorzitter van het College voor Promoties, in het openbaar te verdedigen op 01 februari 2009 om 10.00 uur door Fatma Mu¨ge TANYER-TI˙G˘REK Electrical and Electronics Engineer (Master of Science) in Middle East Technical University, Ankara, Turkey geboren te Konya, Turkije Dit proefschrift is goedgekeurd door de promotor: Prof.dr.ir. L.P. Ligthart copromotor: Dr.ing. I.E. Lager Samenstelling promotiecommissie: Rector Magnificus, voorzitter Prof.dr.ir. L.P. Ligthart, Technische Universiteit Delft, promotor Dr.ing. I.E. Lager, Technische Universiteit Delft, copromotor Prof.ir. P. van Genderen, Technische Universiteit Delft Prof.dr. A. Hızal, Middle East Technical University Prof.dr. C. Craeye, Universit´e Catholique de Louvain Prof. F. Le Chevalier, Technische Universiteit Delft Drir. G.H.C. van Werkhoven, Thales Nederland BV Prof.dr. J.R. Long, Technische Universiteit Delft, reserve lid Printed Antenna Elements with Attested UWB Array Applicability Fatma Mu¨ge Tanyer-Ti˘grek. Thesis Delft University of Technology. With references and with summary in Dutch. ISBN 978–90–9024664–2 Subject headings: ultra wide-band antenna, printed antenna, linear arrays, antenna array mutual coupling, antenna measurements. Printed in The Netherlands Copyright (cid:13)c 2009 by F.M. Tanyer-Ti˘grek All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, includ- ing photocopying, recording or by any information storage and retrieval system, without permission from the copyright owner. The work presented in this thesis was financially supported by the Nether- lands Technology Foundation (STW) and (semi-) governmental and indus- trial organizations in the Netherlands. To My Family Contents 1 Introduction 1 1.1 Problem definition and limitations in the research . . . . . . . 3 1.2 Objectives and main research question . . . . . . . . . . . . . 4 1.3 Proposed methodology . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Novelties and main results . . . . . . . . . . . . . . . . . . . . 5 1.5 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . 6 1.6 General conventions employed throughout the thesis . . . . . 8 2 Fundamentals of antennas and arrays 9 2.1 Antenna history and short literature survey . . . . . . . . . . 9 2.2 Antenna elements and arrays . . . . . . . . . . . . . . . . . . 11 2.2.1 Array bandwidth . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 Requirements for UWB antennas . . . . . . . . . . . . 13 2.2.3 Approachestoachieveantennas/arrays operatingover a wide bandwidth . . . . . . . . . . . . . . . . . . . . 14 2.2.4 Limitations in achieving wide-band antennas . . . . . 15 3 Design of UWB elements with no ground plane 19 3.1 Choice for type of radiator . . . . . . . . . . . . . . . . . . . . 19 3.2 “Eared” antenna . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.1 Design procedure . . . . . . . . . . . . . . . . . . . . . 21 II CONTENTS 3.2.2 Determination of the basic dimensions of the original antenna . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.3 Optimization of the antenna . . . . . . . . . . . . . . 26 3.2.4 Validation of the optimization process . . . . . . . . . 29 3.2.5 Further optimization of the antenna . . . . . . . . . . 37 3.2.6 Validation of the final optimization . . . . . . . . . . . 38 3.3 Operating principles and investigation of UWB characteristics 39 3.3.1 Summary of the antenna operating principles . . . . . 42 3.3.2 Traveling wave characteristic and their impact on the UWB performance . . . . . . . . . . . . . . . . . . . . 42 3.4 “Tulip” loop antenna . . . . . . . . . . . . . . . . . . . . . . . 46 3.4.1 Antenna design . . . . . . . . . . . . . . . . . . . . . . 47 3.4.2 Modified loop antenna . . . . . . . . . . . . . . . . . . 50 3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4 Design of an Artificial Magnetic Conductor 61 4.1 High impedance electromagnetic surfaces– standard approach 61 4.1.1 Theoretical background . . . . . . . . . . . . . . . . . 63 4.1.2 Design procedure . . . . . . . . . . . . . . . . . . . . . 65 4.1.3 Integration of the “Tulip” loop antenna and standard AMC structures . . . . . . . . . . . . . . . . . . . . . 67 4.2 Non-standard, a-periodic AMC structure . . . . . . . . . . . . 70 4.2.1 Integration of the “Tulip” loop antenna and non- standard AMC structures . . . . . . . . . . . . . . . . 70 4.2.2 The effect of extending the size of a-periodic AMC structures . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5 Integration of the designed radiators in UWB array envi- ronments 77 5.1 Linear array consisting of “Tulip” loop elements . . . . . . . 78 5.1.1 Array architecture optimization . . . . . . . . . . . . . 78 CONTENTS III 5.1.2 Array performance assessment . . . . . . . . . . . . . 85 5.2 Linear arrays consisting of “Eared” elements . . . . . . . . . 90 5.2.1 Analysis of the linear array containing 7 elements . . . 92 5.2.2 Analysis of the linear array containing 15 elements . . 99 5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6 Suitability of antenna elements to Impulse Radio applica- tions 115 6.1 Readily available solutions to full IR UWB band coverage . . 115 6.2 IR UWB antenna design . . . . . . . . . . . . . . . . . . . . . 116 6.2.1 Design philosophy . . . . . . . . . . . . . . . . . . . . 116 6.2.2 Determination of the antenna dimensions . . . . . . . 119 6.3 Frequency domain validation . . . . . . . . . . . . . . . . . . 123 6.3.1 Scattering parameter measurements . . . . . . . . . . 123 6.3.2 Radiation pattern measurements . . . . . . . . . . . . 123 6.4 Time-domain validation . . . . . . . . . . . . . . . . . . . . . 130 6.4.1 System setup . . . . . . . . . . . . . . . . . . . . . . . 130 6.4.2 Investigation of the group delay . . . . . . . . . . . . . 130 6.4.3 Investigation of the fidelity factor . . . . . . . . . . . . 131 6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 7 Conclusions 137 7.1 General conclusions and discussions . . . . . . . . . . . . . . 137 7.2 Elements of novelty . . . . . . . . . . . . . . . . . . . . . . . . 140 7.3 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . 141 A Work embedding in IRCTR antenna research 145 B (Quasi-) magnetic antennas 147 C Time-domain de-embedding techniques 149 IV CONTENTS D Array reflection coefficient synthesis 151 E Coplanar waveguide structures 155 E.1 Conventional coplanar waveguides . . . . . . . . . . . . . . . 155 E.2 Coplanar waveguides on a finite thickness dielectric substrate 158 Bibliography 161 List of Abbreviations 171 Summary 173 Samenvatting 175 Acknowledgments 177 About the author 179 Author’s Publications 181
Description: