Problem Books in Mathematics Edited by P. Winkler For other titles published in this series, go to www.springer.com/series/714 Alexander Komech • Andrew Komech Principles of Partial Differential Equations Alexander Komech Andrew Komech Faculty of Mathematics Department of Mathematics Vienna University Texas A&M University 1090 Vienna College Station, TX 77843 Austria USA [email protected] [email protected] Series Editor: Peter Winkler Department of Mathematics Dartmouth College Hanover, NH 03755 USA [email protected] ISBN 978-1-4419-1095-0 e-ISBN 978-1-4419-1096-7 DOI 10.2007/978-1-4419-1096-7 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2009932894 Mathematics Subject Classification (2000): 32-XX, 35-00, 35-01 ©SpringerScience + BusinessMedia,LLC2009 Allrightsreserved. Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permissionofthepublisher(SpringerScience+BusinessMedia,LLC,233SpringStreet,NewYork,NY 10013,USA),exceptforbriefexcerptsinconnectionwithreviewsorscholarlyanalysis.Useinconnection withanyformofinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,eveniftheyare notidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubject toproprietaryrights. Cover art: Olga Rozmakhova, [email protected] Printedonacid-freepaper Springer is part of Springer Science+Business Media (www.springer.com) Preface ThisbookisintendedtogivethereaderanopportunitytomastersolvingPDEprob- lems.Ourmaingoalwastohaveaconcisetextthatwouldcovertheclassicaltools of PDE theory that are used in today’s science and engineering, such as charac- teristics, the wave propagation,the Fourier method,distributions, Sobolevspaces, fundamentalsolutions, and Green’s functions. While introductoryFourier method – based PDE books do not give an adequate description of these areas, the more advancedPDEbooksarequitetheoreticalandrequireahighlevelofmathematical backgroundfromareader.Thisbookwaswrittenspecificallytofillthisgap,satis- fyingthe demandofthewiderangeofenduserswhoneedthe knowledgeofhow tosolvethePDEproblemsandatthesametimearenotgoingtospecializeinthis areaofmathematics.Arguably,thisistheshortestPDEcourse,whichstretchesfar beyondcommon,Fouriermethod–basedPDEtexts.Forexample,[Hab03],which is a commonthoroughtextbookonpartialdifferentialequations,teachesa similar setoftoolswhilebeingaboutfivetimeslonger. Thebookisproblem-oriented.Thetheoreticalpartisrigorousyetshort.Some- timeswereferthereadertotextbooksthatgivewidercoverageofthetheory.Yet,im- portanttheoreticaldetailsarepresentedwithcare,whilethehintsgivethereaderan opportunitytorestoretheargumentstothefullrigor.Manyexamplesfromphysics are intended to keep the book intuitive for the reader and to illustrate the applied natureofthesubject. Thebookwillbeusefulforanyhigher-levelundergraduatecourseandforself- study for both graduateand higher-levelundergraduatestudents, and for any spe- cialtyinsciences.ItsRussianversionhasbeenastandardproblem-solvingmanual atMoscowStateUniversitysince1988,andisalsousedbystudentsofSt.Peters- burgUniversityandNovosibirskUniversities.ItsSpanishversionisusedatMorelia UniversityinMexico,whiletheEnglishdrafthasalreadybeenusedinViennaUni- versityandatTexasA&MUniversity. Forfurtherreadingwerecommend[Str92],[Eva98],and[EKS99]. Mu¨nchen, AlexanderKomech August2007 AndrewKomech v Acknowledgements The first authoris indebtedto MargaritaKorotkinaforthe fortunatesuggestionto write this book, to A.F. Filippov, A.S. Kalashnikov, M.A. Shubin, T.D. Ventzel, andM.I.Vishikforcheckingthefirstversionofthemanuscriptandfortheadvice. Both authors are grateful to H. Spohn (Technische Universita¨t, Mu¨nchen) and to E.Zeidler(Max-PlanckInstituteforMathematics,Leipzig)fortheirhospitalityand supportduringtheworkonthebook. BothauthorsweresupportedbyInstituteforInformationTransmissionProblems (RussianAcademyofSciences).ThefirstauthorwassupportedbytheDepartment ofMechanicsandMathematicsofMoscowStateUniversity,bytheAlexandervon HumboldtResearchAward,FWFGrantP19138-N13,andtheGrantsofRFBR.The secondauthorwassupportedbyTexasA&MUniversityandbytheNationalScience FoundationunderGrantsDMS-0621257andDMS-0600863. vii Contents 1 Hyperbolicequations.Methodofcharacteristics................... 1 1 Derivationofthed’Alembertequation ......................... 1 2 Thed’Alembertmethodforinfinitestring ...................... 7 3 Analysisofthed’Alembertformula ........................... 12 4 Second-orderhyperbolicequationsintheplane ................. 19 5 Semi-infinitestring ......................................... 30 6 Finitestring ............................................... 44 7 Waveequationwithmanyindependentvariables ................ 46 8 Generalhyperbolicequations................................. 56 2 TheFouriermethod ............................................ 65 9 Derivationoftheheatequation ............................... 65 10 Mixedproblemfortheheatequation .......................... 67 11 TheSturm–Liouvilleproblem ............................... 68 12 Eigenfunctionexpansions.................................... 74 13 TheFouriermethodfortheheatequation....................... 78 14 Mixedproblemforthed’Alembertequation .................... 83 15 TheFouriermethodfornonhomogeneousequations ............. 86 16 TheFouriermethodfornonhomogeneousboundaryconditions .... 93 17 TheFouriermethodfortheLaplaceequation ................... 95 3 DistributionsandGreen’sfunctions ..............................105 18 Motivation ................................................105 19 Distributions ..............................................109 20 Operationsondistributions ..................................110 21 Differentiationofjumpsandtheproductrule ...................115 22 Fundamentalsolutionsofordinarydifferentialequations..........118 23 Green’sfunctiononaninterval ...............................121 24 Solvabilityconditionfortheboundaryvalueproblems............125 25 TheSobolevfunctionalspaces................................128 26 Well-posednessofthewaveequationintheSobolevspaces .......130 ix