ebook img

Principles of Lake Sedimentology PDF

327 Pages·1983·12.454 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Principles of Lake Sedimentology

L. HAkanson . M. Jansson Principles of Lake Sedimentology With 187 Figures Springer-Verlag Berlin Heidelberg New York Tokyo 1983 Dr. LARS HAKANSON National Swedish Environment Protection Board Water Quality Laboratory Uppsala S-750 08 Uppsala, Sweden Dr. MATS JANSSON Institute of Limnology University of Uppsala S-75122 Uppsala, Sweden TSBN-13: 978-3-642-69276-5 e-TSBN-13: 978-3-642-69274-1 DOl: 10.1007/978-3-642-69274-1 Library of Congress Catalog 109 10 PubhcatlOn Data. MaIO entry under title: Pnnclples of lake sedimentology. 1. Sedimentation and deposition. 2. Lakes. I. Hakanson, Lars. II. Jansson, M. (Mats), 1947-. QE571.P74. 1983. 551.3'5. 83-16791. ThIs work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use a fee is payable to 'Verwertungsgesellschaft Wort', MUnich. © by Springer-Verlag Berlin Heidelberg 1983. Softcover reprint of the hardcover 1st edition 1983 The use of registered names, trademarks, etc. in thIS pubhcation does not Imply, even 10 the absence of a specific statement, that such names are exempt from the relevant protective law and regulations and therefore free for general use. 2132/3130-543210 To create order in nature is the ultimate goal ofm ost scientific endeavours. With this book, we cannot hope to achieve that goal, only a higher level of disorder. Lake Sedimentology is a science with tradition: "For example, in the area where the Danube flows out of Europe into the Pontus through several mouths a bank has been formed opposite the river by the mud which has been discharged from the mouths; it is nearly 120 miles in length, and a day's voyage out to sea, so that ships which are navigating the Pontus and are far away from the shore may easily, if they are sailing unwarily, run aground on certain parts of these shoals, which sailors call 'the Breasts'. The fact that these deposits are not formed close inshore but are driven so far away from the land must be accounted for as follows. In so far as the currents of the rivers are stronger than those of the sea and force a way through it, the earth and other matter washed down by the stream must continue to be thrust forward, and cannot be allowed to come to rest or subside. But when the impetus of the current has become spent amid the increasing depth and volume of the sea, then the earth sinks by reason of its natural weight and settles. This is why in the case of large and swift rivers where the sea near the coast is deep, the deposits build up at some distance away, but in the case of small and sluggish streams, the sand-banks are formed close to their mouths. This fact is clearly demonstrated when heavy rains occur, because at such times even quite small streams, when they have overpowered the waves at their mouths, force their mud out to sea to a distance which corresponds to the strength of their currents. We must certainly not refuse to believe in the extent of the sand-bank formed by the Danube or in the quantity of the stones, timber and earth which are washed down by the other rivers; indeed it would be foolish to do so when we often see with our own eyes some insignificant winter torrent quickly swell into a flood, scoop out a bed, and force its way through high ground, sweeping down with it every variety of wood, soil and stones, and forming deposits of such a size that in a short time the area may so change its appearance as to become unrecognizable." FromPolybius (ca. 200-113 B.C.), Book IV, Chapter 41, The Rise of the Roman Empire (Penguin Classics 1979) Contents 1 Prologue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Lake Types and Sediment Types . . . . . . . . . . . . . . . 5 2.1 Lake Classifications. . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Genetic Lake Types. . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Trophic Level Classifications. . . . . . . . . . . . . . . . .. 12 2.1.3 Thermal Lake Types . . . . . . . . . . . . . . . . . . . . . .. 14 2.2 Sediment Classifications. . . . . . . . . . . . . . . . . . . .. 17 2.2.1 Genetic Sediment Types. . . . . . . . . . . . . . . . . . . .. 19 2.2.2 Descriptive Sediment Classifications. . . . . . . . . . . .. 22 2.3 Lake Type versus Sediment Type .............. , 24 3 Methods of Sampling. . . . . . . . . . . . . . . . . . . . . .. 32 3.1 General Requirements on Sampling Equipment. . . . .. 32 3.2 Types of Sampling System . . . . . . . . . . . . . . . . . .. 37 3.2.1 Number of Samples. . . . . . . . . . . . . . . . . . . . . . .. 39 3.2.2 The Sample Formula. . . . . . . . . . . . . . . . . . . . . .. 40 3.2.3 Sampling in Different Environments - Statistical Aspects 43 3.2.4 Sub-Sampling.. . . . . . . . . . . . . . . . . . . . . . . . . .. 48 3.3 Sediment Traps. . . . . . . . . . . . . . . . . . . . . . . . . .. 53 3.3.1 Physics of Sedimentation in Vessels ........... " 53 3.3.2 Geometry of Vessels . . . . . . . . . . . . . . . . . . . . . .. 56 3.3.3 Practical Aspects. . . . . . . . . . . . . . . . . . . . . . . . .. 60 3.3.4 Problems with Sediment Traps ............... " 61 3.4 The Cone Apparatus for in Situ Determination of Sediment Types . . . . . . . . . . . . . . . . . . . . . . . . .. 62 3.5 Methods of Defining Concentrations. . . . . . . . . . . .. 65 3.6 Sampling of Sediment Pore Water. . . . . . . . . . . . . .. 69 4 Physical and Chemical Sediment Parameters. . . . . . .. 73 4.1 Physical Parameters. . . . . . . . . . . . . . . . . . . . . . .. 73 4.1.1 Water Content . . . . . . . . . . . . . . . . . . . . . . . . . .. 73 4.1.2 Loss on Ignition (Organic Content). . . . . . . . . . . . .. 76 4.1.3 Bulk Density . . . . . . . . . . . . . . . . . . . . . . . . . . .. 80 VIII Contents 4.1.4 Grain Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 82 4.1.4.1 Methods of Analysis. . . . . . . . . . . . . . . . . . . . . . .. 82 4.1.4.2 Grain Size Classifications . . . . . . . . . . . . . . . . . . .. 84 4.1.4.3 Statistical Definitions. . . . . . . . . . . . . . . . . . . . . .. 87 4.1.4.4 Grain Size Interrelationships. . . . . . . . . . . . . . . . .. 91 4.2 Chemical Parameters. . . . . . . . . . . . . . . . . . . . . .. 95 4.2.1 Elemental Composition . . . . . . . . . . . . . . . . . . . .. 95 4.2.2 Organic Carbon Compounds . . . . . . . . . . . . . . . . .. 98 4.2.2.1 Humic Compounds. . . . . . . . . . . . . . . . . . . . . . .. 98 4.2.2.2 Other Organic Substances. . . . . . . . . . . . . . . . . . .. 100 4.2.3 Minerals in Lake Sediments ................. " 101 4.2.3.1 Carbonates.............................. 101 4.2.3.2 Silicates................................ 104 4.2.3.3 Iron.................................. 107 4.2.3.4 Phosphorus . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 108 4.2.3.5 Sulfides................................ 112 4.2.3.6 Heavy Metals .......................... " 113 5 Biological Parameters. . . . . . . . . . . . . . . . . . . . . .. 118 5.1 Sediment-Living Algae. . . . . . . . . . . . . . . . . . . . .. 118 5.2 Macrophytes ........................... " 121 5.3 Benthic Invertebrates. . . . . . . . . . . . . . . . . . . . . .. 122 5.3.1 Important Forms of Benthic Animals. . . . . . . . . . .. 123 5.3.2 Feeding Mechanisms and Food Types Among Insects.. 127 5.3.3 Distribution of Benthic Fauna Within Lakes. . . . . . .. 127 5.3.4 Benthic Lake Typologies. . . . . . . . . . . . . . . . . . . .. 131 5.4 Bacteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 133 5.4.1 Functional Classification of Bacteria. . . . . . . . . . . .. 134 5.4.2 Bacterial Turnover of Important Elements ....... " 135 5.4.2.1 Oxidation and Reduction of Nitrogen Compounds. . .. 135 5.4.2.2 Oxidation and Reduction of Sulfur Compounds. . . .. 136 5.4.2.3 Oxidation and Reduction ofIron . . . . . . . . . . . . . .. 138 5.4.2.4 Fermentation .......................... " 138 5.4.2.5 Methane Formation ...................... " 139 5.4.3 Decomposition of Organic Material - General Concepts 139 5.4.4 Strategies and Methods for Determination of Bacterial Activity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 143 5.4.4.1 The Whole-Lake Approach. . . . . . . . . . . . . . . . . .. 143 5.4.4.2 Bacterial Activity in Experimental Procedures ..... " 143 5.4.4.3 Parameters Reflecting Total Bacterial Activity .... " 145 5.4.4.4 Factors Reflecting Defined Parts of Bacterial Activity 147 6 Sedimentation in Lakes and Water Dynamics. . . . . .. 148 6.1 Physics of Sedimentation in Lakes . . . . . . . . . . . . .. 148 6.2 Geography of Sedimentation in Lakes. . . . . . . . . . .. 156 Contents IX 6.2.1 River-Mouth Areas. . . . . . . . . . . . . . . . . . . . . . . .. 157 6.2.1.1 Delta Sedimentation . . . . . . . . . . . . . . . . . . . . . .. 157 6.2.1.2 River Plume Sedimentation. . . . . . . . . . . . . . . . . .. 159 6.2.1.3 The Borderline Between River Action and Wind/Wave Action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 164 6.2.2 Open Water Areas. . . . . . . . . . . . . . . . . . . . . . . .. 170 6.2.3 Temporal Variations . . . . . . . . . . . . . . . . . . . . . .. 174 7 Lake Bottom Dynamics ..................... 177 7.1 Definitions .............................. 177 7.2 Processes of Resuspension. . . . . . . . . . .......... 181 7.2.1 Entrainment ............................. 181 7.2.2 Turbidific Sedimentation .................... 184 7.2.3 Wind/Wave Influences ...................... 188 7.2.4 Topographical Influences .................... 194 7.3 Methods to Determine Prevailing Bottom Dynamics .. 200 7.3.1 lake-Specific Methods. . . . . . . . .............. 201 7.3.1.1 The Energy-Topography Formula ............... 201 7.3.1.2 The Characteristic Water Content Model .......... 202 7.3.2 Site-Specific Methods ....................... 204 7.3.2.1 The ETA-Diagram ......................... 205 7.3.2.2 The Cone Apparatus ....................... 206 8 Sediment Dynamics and Sediment Age . . . . . . . . . .. 213 8.1 Laminated Sediments. . . . . . . . . . . . . . . . . . . . . .. 213 8.2 Bioturbation. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 218 8.2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 218 8.2.2 Patchiness. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 219 8.2.2.1 Areal Patchiness . . . . . . . . . . . . . . . . . . . . . . . . .. 219 8.2.2.2 Vertical Patchiness. . . . . . . . . . . . . . . . . . . . . . . .. 222 8.2.2.3 Temporal Patchiness . . . . . . . . . . . . . . . . . . . . . .. 222 8.2.2.4 Species-Specific Patchiness . . . . . . . . . . . . . . . . . .. 222 8.2.3 Modelling of Bioturbation/Biotransport. . . . . . . . . .. 224 8.2.3.1 A Dynamic Model. . . . . . . . . . . . . . . . . . . . . . . .. 225 8.2.3.2 An Empirical Model. . . . . . . . . . . . . . . . . . . . . . .. 232 8.3 Sediment Age and Age Determination. . . . . . . . . . .. 237 8.3.1 Methods of Age Determination . . . . . . . . . . . . . . .. 237 8.3.1.1 Lead-21O. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 241 8.3.1.2 Cesium-137 . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 243 9 Release of Substances from Lake Sediments - the Example of Phosphorus. . . . . . . . . . . . . . . . . .. 244 9.1 Background and Presuppositions . . . . . . . . . . . . . .. 244 9.2 Factors of Importance for Mobilization of Phosphorus. 246 9.2.1 Fractional Distribution of Particulate Phosphorus. . .. 246 X Contents 9.2.2 Redox Conditions. . . . . . . . . . . . . . . . . . . . . . .. 247 9.2.3 pH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 248 9.2.4 Microbial Mineralization. . . . . . . . . . . . . . . . . . .. 249 9.2.5 Equilibrium Reactions . . . . . . . . . . . . . . . . . . . .. 250 9.3 Transport Mechanisms . . . . . . . . . . . . . . . . . . . .. 250 9.3.1 Phosphorus in Sediment Pore Water. . . . . . . . . . .. 250 9.3.2 Diffusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 253 9.3.3 Turbulent Mixing/Bottom Dynamics. . . . . . . . . . .. 253 9.3.4 Bioturbation. . . . . . . . . . . . . . . . . . . . . . . . . . .. 254 9.3.5 Gas Convection. . . . . . . . . . . . . . . . . . . . . . . . .. 254 9.4 A General View of Phosphorus Release . . . . . . . . .. 255 10 Sediments in Aquatic Pollution Control Programmes 258 10.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 10.2 Why Use Sediments? ..................... . 258 10.3 How to Use Sediments .................... . 262 10.3.1 Principles of Metal Distribution in Aquatic Systems .. 263 10.3.1.1 The Type of Metal and Type of Pollution ........ . 264 10.3.1.2 The "Carrier Particles" . . . . . . . . . . . . . . . . . . . . . 265 10.3.1.3 The Environmental Characteristics ............ . 269 10.3.1.4 Natural Background Levels ................. . 271 10.3.2 The Contamination Factor ................. . 273 10.3.3 Case Study ~ River Kolbacksfm .............. . 274 10.3.4 The Degree of Contamination ............... . 280 11 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 283 Appendix 1 Table for Student's t-Distribution. . . . . . . . . . .. 285 Appendix 2 Computer Programmes in BASIC for Determination of Biotransport, Time Stratification and Sediment Compaction. . . . . . . . . . . . . . . . . . . . . . . . .. 286 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 295 Subject Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 309 1 Prologue Looking at the present textbooks in General Sedimentology, e.g., Leeder's (1982) S-edimentology, Friedman and Sanders' (1978) Principles ofS edimentology, Reineck and Singh's (1975) Depositional Sedimentary Environments, Allen's (1971) Physical Processes of Sedimentation, or Krumbein and Sloss' (1963) Stratigraphy and Sedi mentation, it is evident that sedimentological processes in lakes, if mentioned at all, occupy only very few pages. From a strict geological perspective, that is not entirely unreasonable. But from a limnological, hydrological and "environmental" point of view, we believe that the present situation is unsatisfactory and that a textbook on the principles of sedimentation in lakes would fill a niche. The overall aim of this book is to present a comprehensive outline on the basic sedimentological principles for lakes, to focus on environmental aspects and matters related to lake management and control - on lake ecology rather than lake geology. To achieve this, we have tried to create not a state-of-the-art publication or a catalogue on "who did what", but a "how and why" book, which in one volume comprises the fundamentals of lake sedimentology. Our hope is that the book may be used as a guide to those who plan, perform, and evaluate lake sedimentological investigations. Our purpose is to give a multi-disciplinary perspective. This philosophy is shown in Fig. 1.1, where Lake Sedimentology is depicted as the hub of a wheel of Limnology, Ecology, Hydrology/Hydraulics, Geosciences, Pollution Control, Ecotoxicology, Chemistry /physics, Mathematics/Statistics, and Methodology/Techniques. We do not, Fig. 1.1. Lake Sedimentology as a multi-disciplinary subject

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.